Skip to main content

Machine Learning, Model, Surrogate, Metamodels, Response Surface

Project description

ezmodel - A Common Interface for Models and Model Selection

For more information about our toolbox, users are encouraged to read our documentation. https://anyoptimization.com/projects/ezmodel/

python 3.6 license apache

Installation

The official release is always available at PyPi:

pip install -U ezmodel

Usage

Benchmarking

import numpy as np

import pandas as pd
pd.set_option('display.expand_frame_repr', False)
pd.set_option('max_colwidth', 1000)

from ezmodel.core.benchmark import Benchmark
from ezmodel.core.factory import models_from_clazzes
from ezmodel.models.kriging import Kriging
from ezmodel.models.rbf import RBF
from ezmodel.util.partitioning.crossvalidation import CrossvalidationPartitioning

X = np.random.random((100, 3)) * 2 * np.pi
y = np.sin(X).sum(axis=1)

models = models_from_clazzes(RBF, Kriging)

# set up the benchmark and add the models to be used
benchmark = Benchmark(models, n_threads=4, verbose=True, raise_exception=True)

# create partitions to validate the performance of each model
partitions = CrossvalidationPartitioning(k_folds=5, seed=1).do(X)

# runs the experiment with the specified partitioning
benchmark.do(X, y, partitions=partitions)

# print out the benchmark results
print(benchmark.statistics("mae"))
                                                                  mae
                                                                 mean       std       min        max    median
label
Kriging[regr=constant,corr=gauss,thetaU=100,ARD=False]       0.017159  0.007472  0.009658   0.025359  0.014855
Kriging[regr=constant,corr=gauss,thetaU=20,ARD=False]        0.017159  0.007472  0.009658   0.025359  0.014855
Kriging[regr=linear,corr=gauss,thetaU=100,ARD=False]         0.018064  0.008069  0.010350   0.027456  0.014246
Kriging[regr=linear,corr=gauss,thetaU=20,ARD=False]          0.018064  0.008069  0.010350   0.027456  0.014246
Kriging[regr=constant,corr=gauss,thetaU=100,ARD=True]        0.021755  0.007409  0.011955   0.028896  0.025163
Kriging[regr=constant,corr=gauss,thetaU=20,ARD=True]         0.021755  0.007409  0.011955   0.028896  0.025163
Kriging[regr=linear,corr=gauss,thetaU=20,ARD=True]           0.025018  0.011348  0.011576   0.040585  0.022124
Kriging[regr=linear,corr=gauss,thetaU=100,ARD=True]          0.025018  0.011348  0.011576   0.040585  0.022124
Kriging[regr=constant,corr=exp,thetaU=100,ARD=False]         0.034493  0.009328  0.025092   0.045610  0.030661
Kriging[regr=constant,corr=exp,thetaU=20,ARD=False]          0.034493  0.009328  0.025092   0.045610  0.030661
Kriging[regr=linear,corr=exp,thetaU=100,ARD=False]           0.035734  0.009922  0.025611   0.047926  0.031473
Kriging[regr=linear,corr=exp,thetaU=20,ARD=False]            0.035734  0.009922  0.025611   0.047926  0.031473
Kriging[regr=constant,corr=exp,thetaU=100,ARD=True]          0.051527  0.010941  0.037944   0.065866  0.047440
Kriging[regr=constant,corr=exp,thetaU=20,ARD=True]           0.051527  0.010941  0.037944   0.065866  0.047440
Kriging[regr=linear,corr=exp,thetaU=100,ARD=True]            0.065867  0.025312  0.039058   0.104449  0.059957
Kriging[regr=linear,corr=exp,thetaU=20,ARD=True]             0.065867  0.025312  0.039058   0.104449  0.059957
RBF[kernel=cubic,tail=quadratic,normalized=True]             0.121947  0.033552  0.077895   0.167120  0.127345
RBF[kernel=cubic,tail=constant,normalized=True]              0.125348  0.037982  0.072579   0.169413  0.140753
RBF[kernel=cubic,tail=linear,normalized=True]                0.125474  0.038609  0.071268   0.169843  0.137987
RBF[kernel=cubic,tail=linear+quadratic,normalized=True]      0.126070  0.039773  0.071279   0.171862  0.135489

RBF

import matplotlib.pyplot as plt
import numpy as np

from ezmodel.models.rbf import RBF
from ezmodel.util.sample_from_func import sine_function

rbf = RBF(kernel="gaussian")

# create some data to test this model on
X, y, _X, _y = sine_function(20, 200)

# let the model fit the data
rbf.fit(X, y)

# predict the data using the model
y_hat = rbf.predict(_X)

# predict the data using the model
_X = _X[np.argsort(_X[:, 0])]
y_hat = rbf.predict(_X)

plt.scatter(X, y, label="Data")
plt.plot(_X, y_hat, color="black", label="RBF")
plt.legend()
plt.show()

Kriging

import matplotlib.pyplot as plt
import numpy as np

from ezmodel.models.kriging import Kriging
from ezmodel.util.sample_from_func import square_function

model = Kriging(regr="linear",
                corr="gauss",
                ARD=False)

# create some data to test this model on
X, y, _X, _y = square_function(100, 20)

# let the model fit the data
model.fit(X, y)

# predict the data using the model
y_hat = model.predict(_X)

# predict the data using the model
_X = _X[np.argsort(_X[:, 0])]
y_hat = model.predict(_X)

plt.scatter(X, y, label="Data")
plt.plot(_X, y_hat, color="black", label="RBF")
plt.legend()
plt.show()

Contact

Feel free to contact us if you have any question:

Julian Blank (blankjul [at] msu.edu)
Michigan State University
Computational Optimization and Innovation Laboratory (COIN)
East Lansing, MI 48824, USA

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ezmodel-0.2.1.tar.gz (27.8 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page