Skip to main content

Python Optimal Transport Library

Project description

POT: Python Optimal Transport
=============================

|PyPI version| |Build Status| |Documentation Status|

This open source Python library provide several solvers for optimization
problems related to Optimal Transport for signal, image processing and
machine learning.

It provides the following solvers:

- OT solver for the linear program/ Earth Movers Distance [1].
- Entropic regularization OT solver with Sinkhorn Knopp Algorithm [2]
and stabilized version [9][10] with optional GPU implementation
(required cudamat).
- Bregman projections for Wasserstein barycenter [3] and unmixing [4].
- Optimal transport for domain adaptation with group lasso
regularization [5]
- Conditional gradient [6] and Generalized conditional gradient for
regularized OT [7].
- Joint OT matrix and mapping estimation [8].
- Wasserstein Discriminant Analysis [11] (requires autograd +
pymanopt).
- Gromov-Wasserstein distances and barycenters [12]

Some demonstrations (both in Python and Jupyter Notebook format) are
available in the examples folder.

Installation
------------

The library has been tested on Linux, MacOSX and Windows. It requires a
C++ compiler for using the EMD solver and relies on the following Python
modules:

- Numpy (>=1.11)
- Scipy (>=0.17)
- Cython (>=0.23)
- Matplotlib (>=1.5)

Pip installation
^^^^^^^^^^^^^^^^

You can install the toolbox through PyPI with:

::

pip install POT

or get the very latest version by downloading it and then running:

::

python setup.py install --user # for user install (no root)

Anaconda installation with conda-forge
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

If you use the Anaconda python distribution, POT is available in
`conda-forge <https://conda-forge.org>`__. To install it and the
required dependencies:

::

conda install -c conda-forge pot

Post installation check
^^^^^^^^^^^^^^^^^^^^^^^

After a correct installation, you should be able to import the module
without errors:

.. code:: python

import ot

Note that for easier access the module is name ot instead of pot.

Dependencies
~~~~~~~~~~~~

Some sub-modules require additional dependences which are discussed
below

- **ot.dr** (Wasserstein dimensionality rediuction) depends on autograd
and pymanopt that can be installed with:

::

pip install pymanopt autograd

- **ot.gpu** (GPU accelerated OT) depends on cudamat that have to be
installed with:

::

git clone https://github.com/cudamat/cudamat.git
cd cudamat
python setup.py install --user # for user install (no root)

obviously you need CUDA installed and a compatible GPU.

Examples
--------

Short examples
~~~~~~~~~~~~~~

- Import the toolbox

.. code:: python

import ot

- Compute Wasserstein distances

.. code:: python

# a,b are 1D histograms (sum to 1 and positive)
# M is the ground cost matrix
Wd=ot.emd2(a,b,M) # exact linear program
Wd_reg=ot.sinkhorn2(a,b,M,reg) # entropic regularized OT
# if b is a matrix compute all distances to a and return a vector

- Compute OT matrix

.. code:: python

# a,b are 1D histograms (sum to 1 and positive)
# M is the ground cost matrix
T=ot.emd(a,b,M) # exact linear program
T_reg=ot.sinkhorn(a,b,M,reg) # entropic regularized OT

- Compute Wasserstein barycenter

.. code:: python

# A is a n*d matrix containing d 1D histograms
# M is the ground cost matrix
ba=ot.barycenter(A,M,reg) # reg is regularization parameter

Examples and Notebooks
~~~~~~~~~~~~~~~~~~~~~~

The examples folder contain several examples and use case for the
library. The full documentation is available on
`Readthedocs <http://pot.readthedocs.io/>`__.

Here is a list of the Python notebooks available
`here <https://github.com/rflamary/POT/blob/master/notebooks/>`__ if you
want a quick look:

- `1D optimal
transport <https://github.com/rflamary/POT/blob/master/notebooks/plot_OT_1D.ipynb>`__
- `OT Ground
Loss <https://github.com/rflamary/POT/blob/master/notebooks/plot_OT_L1_vs_L2.ipynb>`__
- `Multiple EMD
computation <https://github.com/rflamary/POT/blob/master/notebooks/plot_compute_emd.ipynb>`__
- `2D optimal transport on empirical
distributions <https://github.com/rflamary/POT/blob/master/notebooks/plot_OT_2D_samples.ipynb>`__
- `1D Wasserstein
barycenter <https://github.com/rflamary/POT/blob/master/notebooks/plot_barycenter_1D.ipynb>`__
- `OT with user provided
regularization <https://github.com/rflamary/POT/blob/master/notebooks/plot_optim_OTreg.ipynb>`__
- `Domain adaptation with optimal
transport <https://github.com/rflamary/POT/blob/master/notebooks/plot_otda_d2.ipynb>`__
- `Color transfer in
images <https://github.com/rflamary/POT/blob/master/notebooks/plot_otda_color_images.ipynb>`__
- `OT mapping estimation for domain
adaptation <https://github.com/rflamary/POT/blob/master/notebooks/plot_otda_mapping.ipynb>`__
- `OT mapping estimation for color transfer in
images <https://github.com/rflamary/POT/blob/master/notebooks/plot_otda_mapping_colors_images.ipynb>`__
- `Wasserstein Discriminant
Analysis <https://github.com/rflamary/POT/blob/master/notebooks/plot_WDA.ipynb>`__
- `Gromov
Wasserstein <https://github.com/rflamary/POT/blob/master/notebooks/plot_gromov.ipynb>`__
- `Gromov Wasserstein
Barycenter <https://github.com/rflamary/POT/blob/master/notebooks/plot_gromov_barycenter.ipynb>`__

You can also see the notebooks with `Jupyter
nbviewer <https://nbviewer.jupyter.org/github/rflamary/POT/tree/master/notebooks/>`__.

Acknowledgements
----------------

The contributors to this library are:

- `Rémi Flamary <http://remi.flamary.com/>`__
- `Nicolas Courty <http://people.irisa.fr/Nicolas.Courty/>`__
- `Alexandre Gramfort <http://alexandre.gramfort.net/>`__
- `Laetitia Chapel <http://people.irisa.fr/Laetitia.Chapel/>`__
- `Michael Perrot <http://perso.univ-st-etienne.fr/pem82055/>`__
(Mapping estimation)
- `Léo Gautheron <https://github.com/aje>`__ (GPU implementation)
- `Nathalie
Gayraud <https://www.linkedin.com/in/nathalie-t-h-gayraud/?ppe=1>`__
- `Stanislas Chambon <https://slasnista.github.io/>`__
- `Antoine Rolet <https://arolet.github.io/>`__

This toolbox benefit a lot from open source research and we would like
to thank the following persons for providing some code (in various
languages):

- `Gabriel Peyré <http://gpeyre.github.io/>`__ (Wasserstein Barycenters
in Matlab)
- `Nicolas Bonneel <http://liris.cnrs.fr/~nbonneel/>`__ ( C++ code for
EMD)
- `Marco Cuturi <http://marcocuturi.net/>`__ (Sinkhorn Knopp in
Matlab/Cuda)

Contributions and code of conduct
---------------------------------

Every contribution is welcome and should respect the `contribution
guidelines <CONTRIBUTING.md>`__. Each member of the project is expected
to follow the `code of conduct <CODE_OF_CONDUCT.md>`__.

Support
-------

You can ask questions and join the development discussion:

- On the `POT Slack channel <https://pot-toolbox.slack.com>`__
- On the POT `mailing
list <https://mail.python.org/mm3/mailman3/lists/pot.python.org/>`__

You can also post bug reports and feature requests in Github issues.
Make sure to read our `guidelines <CONTRIBUTING.md>`__ first.

References
----------

[1] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W. (2011,
December). `Displacement interpolation using Lagrangian mass
transport <https://people.csail.mit.edu/sparis/publi/2011/sigasia/Bonneel_11_Displacement_Interpolation.pdf>`__.
In ACM Transactions on Graphics (TOG) (Vol. 30, No. 6, p. 158). ACM.

[2] Cuturi, M. (2013). `Sinkhorn distances: Lightspeed computation of
optimal transport <https://arxiv.org/pdf/1306.0895.pdf>`__. In Advances
in Neural Information Processing Systems (pp. 2292-2300).

[3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G.
(2015). `Iterative Bregman projections for regularized transportation
problems <https://arxiv.org/pdf/1412.5154.pdf>`__. SIAM Journal on
Scientific Computing, 37(2), A1111-A1138.

[4] S. Nakhostin, N. Courty, R. Flamary, D. Tuia, T. Corpetti,
`Supervised planetary unmixing with optimal
transport <https://hal.archives-ouvertes.fr/hal-01377236/document>`__,
Whorkshop on Hyperspectral Image and Signal Processing : Evolution in
Remote Sensing (WHISPERS), 2016.

[5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, `Optimal Transport
for Domain Adaptation <https://arxiv.org/pdf/1507.00504.pdf>`__, in IEEE
Transactions on Pattern Analysis and Machine Intelligence , vol.PP,
no.99, pp.1-1

[6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014).
`Regularized discrete optimal
transport <https://arxiv.org/pdf/1307.5551.pdf>`__. SIAM Journal on
Imaging Sciences, 7(3), 1853-1882.

[7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). `Generalized
conditional gradient: analysis of convergence and
applications <https://arxiv.org/pdf/1510.06567.pdf>`__. arXiv preprint
arXiv:1510.06567.

[8] M. Perrot, N. Courty, R. Flamary, A. Habrard, `Mapping estimation
for discrete optimal
transport <http://remi.flamary.com/biblio/perrot2016mapping.pdf>`__,
Neural Information Processing Systems (NIPS), 2016.

[9] Schmitzer, B. (2016). `Stabilized Sparse Scaling Algorithms for
Entropy Regularized Transport
Problems <https://arxiv.org/pdf/1610.06519.pdf>`__. arXiv preprint
arXiv:1610.06519.

[10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016).
`Scaling algorithms for unbalanced transport
problems <https://arxiv.org/pdf/1607.05816.pdf>`__. arXiv preprint
arXiv:1607.05816.

[11] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016).
`Wasserstein Discriminant
Analysis <https://arxiv.org/pdf/1608.08063.pdf>`__. arXiv preprint
arXiv:1608.08063.

[12] Gabriel Peyré, Marco Cuturi, and Justin Solomon,
`Gromov-Wasserstein averaging of kernel and distance
matrices <http://proceedings.mlr.press/v48/peyre16.html>`__
International Conference on Machine Learning (ICML). 2016.

.. |PyPI version| image:: https://badge.fury.io/py/POT.svg
:target: https://badge.fury.io/py/POT
.. |Build Status| image:: https://travis-ci.org/rflamary/POT.svg?branch=master
:target: https://travis-ci.org/rflamary/POT
.. |Documentation Status| image:: https://readthedocs.org/projects/pot/badge/?version=latest
:target: http://pot.readthedocs.io/en/latest/?badge=latest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

POT-0.4.0.tar.gz (315.5 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page