skip to navigation
skip to content

fastcluster 1.1.24

Fast hierarchical clustering routines for R and Python.

This library provides Python functions for hierarchical clustering. It generates hierarchical clusters from distance matrices or from vector data.

Part of this module is intended to replace the functions

linkage, single, complete, average, weighted, centroid, median, ward

in the module scipy.cluster.hierarchy with the same functionality but much faster algorithms. Moreover, the function linkage_vector provides memory-efficient clustering for vector data.

The interface is very similar to MATLAB’s Statistics Toolbox API to make code easier to port from MATLAB to Python/NumPy. The core implementation of this library is in C++ for efficiency.

User manual: fastcluster.pdf.

Installation files for Windows are provided on PyPI and on Christoph Gohlke’s web page.

The fastcluster package is considered stable and will undergo few changes from now on. If some years from now there have not been any updates, this does not necessarily mean that the package is unmaintained but maybe it just was not necessary to correct anything. Of course, please still report potential bugs and incompatibilities to daniel@danifold.net. You may also use my GitHub repository for bug reports, pull requests etc.

Note that PyPI and my GitHub repository host the source code for the Python interface only. The archive with both the R and the Python interface is available on CRAN and the GitHub repository “cran/fastcluster”. Even though I appear as the author also of this second GitHub repository, this is just an automatic, read-only mirror of the CRAN archive, so please do not attempt to report bugs or contact me via this repository.

Reference: Daniel Müllner, fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R and Python, Journal of Statistical Software, 53 (2013), no. 9, 1–18, http://www.jstatsoft.org/v53/i09/.

 
File Type Py Version Uploaded on Size
fastcluster-1.1.24-cp27-cp27m-macosx_10_11_x86_64.whl (md5, pgp) Python Wheel cp27 2017-08-20 37KB
fastcluster-1.1.24-cp27-cp27m-manylinux1_i686.whl (md5, pgp) Python Wheel cp27 2017-08-20 141KB
fastcluster-1.1.24-cp27-cp27m-manylinux1_x86_64.whl (md5, pgp) Python Wheel cp27 2017-08-20 148KB
fastcluster-1.1.24-cp27-cp27m-win32.whl (md5, pgp) Python Wheel cp27 2017-08-20 32KB
fastcluster-1.1.24-cp27-cp27m-win_amd64.whl (md5, pgp) Python Wheel cp27 2017-08-20 35KB
fastcluster-1.1.24-cp27-cp27mu-manylinux1_i686.whl (md5, pgp) Python Wheel cp27 2017-08-20 141KB
fastcluster-1.1.24-cp27-cp27mu-manylinux1_x86_64.whl (md5, pgp) Python Wheel cp27 2017-08-20 148KB
fastcluster-1.1.24-cp34-cp34m-manylinux1_i686.whl (md5, pgp) Python Wheel cp34 2017-08-20 141KB
fastcluster-1.1.24-cp34-cp34m-manylinux1_x86_64.whl (md5, pgp) Python Wheel cp34 2017-08-20 151KB
fastcluster-1.1.24-cp35-cp35m-manylinux1_i686.whl (md5, pgp) Python Wheel cp35 2017-08-20 142KB
fastcluster-1.1.24-cp35-cp35m-manylinux1_x86_64.whl (md5, pgp) Python Wheel cp35 2017-08-20 151KB
fastcluster-1.1.24-cp35-cp35m-win32.whl (md5, pgp) Python Wheel cp35 2017-08-20 33KB
fastcluster-1.1.24-cp35-cp35m-win_amd64.whl (md5, pgp) Python Wheel cp35 2017-08-20 38KB
fastcluster-1.1.24-cp36-cp36m-macosx_10_11_x86_64.whl (md5, pgp) Python Wheel cp36 2017-08-20 37KB
fastcluster-1.1.24-cp36-cp36m-manylinux1_i686.whl (md5, pgp) Python Wheel cp36 2017-08-20 142KB
fastcluster-1.1.24-cp36-cp36m-manylinux1_x86_64.whl (md5, pgp) Python Wheel cp36 2017-08-20 151KB
fastcluster-1.1.24-cp36-cp36m-win32.whl (md5, pgp) Python Wheel cp36 2017-08-20 33KB
fastcluster-1.1.24-cp36-cp36m-win_amd64.whl (md5, pgp) Python Wheel cp36 2017-08-20 38KB
fastcluster-1.1.24.tar.gz (md5, pgp) Source 2017-08-20 162KB