skip to navigation
skip to content

floraconcierge-client 0.2.1

FloraExpress API python client library.

Latest Version: 0.7.52

Version 0.2.1

FloraConcierge is worldwide flowers delivery service. We provide api services for
building your own flowers delivery e-commerce and submit users orders into our system.

All information at

You can simple install floraconcierge api client into your django environment by adding middleware
`floraconcierge.middleware.ApiClientMiddleware` to your `MIDDLEWARE_CLASSES`.

Also you can add `floraconcierge.middleware.ApiObjectNotFound404` to your middlewares for automatic 404 pages when
api result raises ResultObjectNotFoundError.

Available settings

All settings used in middleware only, if you want manual initiation of api client object, you can do it yourself.

* `FLORACONCIERGE_API_ID` Required. Your application ID.

* `FLORACONCIERGE_API_SECRET` Required. Your application secret.

* `FLORACONCIERGE_API_INIT_ENV` Optional. You can setup custom init function for env setup. Function takes params
`client, request, restored` where client is ApiClient instance, request is django request object and restored is flag
variable indicating client env was restored from request session.

* `FLORACONCIERGE_API_INIT_CLIENT` Optional. Custom api client initiation function. By default middleware initiate
client with function `floraconcierge.middleware.initialize_apiclient`. You can se your own function. Function take
only one param `request`.

Django debug toolbar panel

Also available debug panel for django. You can add `floraconcierge.panels.FloraConciergeRequests` to django debug
panels settings `DEBUG_TOOLBAR_PANELS`.

Collection methods

Now you can search throught your result collections with find/findall methods.

Request cache middleware

FloraConcierge api provides simple request lifetime cache object for caching offen queried data on page. This cache
cleares automatically every next request.

You can add `floraconcierge.middleware.RequestCacheMiddleware` to your `MIDDLEWARE_CLASSES` and get request cache
instance with function `floraconcierge.cache.get_request_cache()`.

You must inherit your cache object from `floraconcierge.cache.RequestCache` and setup it via `FLORACONCIERGE_CACHE_CLASS`.  
File Type Py Version Uploaded on Size
floraconcierge-client-0.2.1.tar.gz (md5) Source 2014-06-07 14KB