Skip to main content

Inferno is a little library providing utilities and convenience functions/classes around PyTorch.

Project description

=======
Inferno
=======



.. image:: https://img.shields.io/pypi/v/inferno.svg
:target: https://pypi.python.org/pypi/pytorch-inferno

.. image:: https://img.shields.io/travis/nasimrahaman/inferno.svg
:target: https://travis-ci.org/nasimrahaman/inferno

.. image:: https://readthedocs.org/projects/inferno-pytorch/badge/?version=latest
:target: http://inferno-pytorch.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status

.. image:: https://pyup.io/repos/github/nasimrahaman/inferno/shield.svg
:target: https://pyup.io/repos/github/nasimrahaman/inferno/
:alt: Updates



.. image:: http://svgshare.com/i/2j7.svg





Inferno is a little library providing utilities and convenience functions/classes around
`PyTorch <https://github.com/pytorch/pytorch>`_.
It's a work-in-progress, but the first release is underway!



* Free software: Apache Software License 2.0
* Documentation: https://pytorch-inferno.readthedocs.io (Work in progress).


Features
--------

Current features include:
* a basic
`Trainer class <https://github.com/nasimrahaman/inferno/tree/master/docs#preparing-the-trainer>`_
to encapsulate the training boilerplate (iteration/epoch loops, validation and checkpoint creation),
* a `graph API <https://github.com/nasimrahaman/inferno/blob/master/inferno/extensions/containers/graph.py>`_ for building models with complex architectures, powered by `networkx <https://github.com/networkx/networkx>`_.
* `easy data-parallelism <https://github.com/nasimrahaman/inferno/tree/master/docs#using-gpus>`_ over multiple GPUs,
* `a submodule <https://github.com/nasimrahaman/inferno/blob/master/inferno/extensions/initializers>`_ for `torch.nn.Module`-level parameter initialization,
* `a submodule <https://github.com/nasimrahaman/inferno/blob/master/inferno/io/transform>`_ for data preprocessing / transforms,
* `support <https://github.com/nasimrahaman/inferno/tree/master/docs#using-tensorboard>`_ for `Tensorboard <https://www.tensorflow.org/get_started/summaries_and_tensorboard>`_ (best with atleast `tensorflow-cpu <https://github.com/tensorflow/tensorflow>`_ installed)
* `a callback API <https://github.com/nasimrahaman/inferno/tree/master/docs#setting-up-callbacks>`_ to enable flexible interaction with the trainer,
* `various utility layers <https://github.com/nasimrahaman/inferno/tree/master/inferno/extensions/layers>`_ with more underway,
* `a submodule <https://github.com/nasimrahaman/inferno/blob/master/inferno/io/volumetric>`_ for volumetric datasets, and more!





.. code:: python

import torch.nn as nn
from inferno.io.box.cifar10 import get_cifar10_loaders
from inferno.trainers.basic import Trainer
from inferno.trainers.callbacks.logging.tensorboard import TensorboardLogger
from inferno.extensions.layers.convolutional import ConvELU2D
from inferno.extensions.layers.reshape import Flatten

# Fill these in:
LOG_DIRECTORY = '...'
SAVE_DIRECTORY = '...'
DATASET_DIRECTORY = '...'
DOWNLOAD_CIFAR = True
USE_CUDA = True

# Build torch model
model = nn.Sequential(
ConvELU2D(in_channels=3, out_channels=256, kernel_size=3),
nn.MaxPool2d(kernel_size=2, stride=2),
ConvELU2D(in_channels=256, out_channels=256, kernel_size=3),
nn.MaxPool2d(kernel_size=2, stride=2),
ConvELU2D(in_channels=256, out_channels=256, kernel_size=3),
nn.MaxPool2d(kernel_size=2, stride=2),
Flatten(),
nn.Linear(in_features=(256 * 4 * 4), out_features=10),
nn.Softmax()
)

# Load loaders
train_loader, validate_loader = get_cifar10_loaders(DATASET_DIRECTORY,
download=DOWNLOAD_CIFAR)

# Build trainer
trainer = Trainer(model) \
.build_criterion('CrossEntropyLoss') \
.build_metric('CategoricalError') \
.build_optimizer('Adam') \
.validate_every((2, 'epochs')) \
.save_every((5, 'epochs')) \
.save_to_directory(SAVE_DIRECTORY) \
.set_max_num_epochs(10) \
.build_logger(TensorboardLogger(log_scalars_every=(1, 'iteration'),
log_images_every='never'),
log_directory=LOG_DIRECTORY)

# Bind loaders
trainer \
.bind_loader('train', train_loader) \
.bind_loader('validate', validate_loader)

if USE_CUDA:
trainer.cuda()

# Go!
trainer.fit()




To visualize the training progress, navigate to `LOG_DIRECTORY` and fire up tensorboard with

.. code:: bash

tensorboardlogdir={PWD} --port=6007


and navigate to `localhost:6007` with your browser.



Future Features:
------------------------
Planned features include:
* a class to encapsulate Hogwild! training over multiple GPUs,
* minimal shape inference with a dry-run,
* proper packaging and documentation,
* cutting-edge fresh-off-the-press implementations of what the future has in store. :)



Credits
---------
All contributors are listed here_.

.. _here: https://pytorch-inferno.readthedocs.io/en/latest/authors.html

This packag was partially generated with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template + lots of work by Thorsten.

.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage



=======
History
=======

0.1.0 (2017-08-24)
------------------

* First early release on PyPI

0.1.1 (2017-08-24)
------------------

* Version Increment

0.1.2 (2017-08-24)
------------------

* Version Increment


0.1.3 (2017-08-24)
------------------

* Updated Documentation

0.1.4 (2017-08-24)
------------------

* travis auto-deployment on pypi


0.1.5 (2017-08-24)
------------------

* travis changes to run unittest


0.1.6 (2017-08-24)
------------------

* travis missing packages for unittesting
* fixed inconsistent version numbers

0.1.7 (2017-08-25)
------------------

* setup.py critical bugix in install procedure

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page