skip to navigation
skip to content

mem_top 0.1.0

Shows top suspects for memory leaks in your Python program.

Latest Version: 0.1.6

Usage:

pip install mem_top
from mem_top import mem_top

# From time to time:
logging.debug(mem_top()) # Or just print().

Result:

refs:
144997  <type 'collections.defaultdict'> defaultdict(<type 'collections.deque'>, {<GearmanJobRequest task='...', unique='.
144996  <type 'dict'> {'.:..............:.......': <GearmanJobRequest task='..................', unique='.................
18948   <type 'dict'> {...
1578    <type 'dict'> {...
968     <type 'dict'> {...
968     <type 'dict'> {...
968     <type 'dict'> {...
767     <type 'list'> [...
726     <type 'dict'> {...
608     <type 'dict'> {...

types:
292499  <type 'dict'>
217912  <type 'collections.deque'>
72702   <class 'gearman.job.GearmanJob'>
72702   <class 'gearman.job.GearmanJobRequest'>
12340   <type '...
3103    <type '...
1112    <type '...
855     <type '...
767     <type '...
532     <type '...

Explaining result:

  • Noticed a leak of 6GB RAM and counting.
  • Added “mem_top” and let it run for a while.
  • When got the result above it became absolutely clear who is leaking here - the Python client of Gearman.
  • Found its known bug - https://github.com/Yelp/python-gearman/issues/10 leaking defaultdict of deques, and a dict of GearmanJobRequest-s, just as the “mem_top” showed.
  • Replaced “python-gearman” - long story: stale 2.0.2 at PyPI, broken 2.0.X at github, etc.
  • “mem_top” confirmed the leak is now completely closed.

Config defaults:

mem_top(limit=10, width=100, sep='\n', refs_format='{num}\t{type} {obj}', types_format='{num}\t {obj}')
 
File Type Py Version Uploaded on Size
mem_top-0.1.0.tar.gz (md5) Source 2014-05-26 1KB