Metrics for Machine Learning evaluation Data Science Measurement
Project description
Metrics for evaluating machine learning models or Data Science
Include : All metrics from SKLEARN. Category based metrics. ########################################################################
from metric.metric import *
##### Classification metrics
accuracy_score(y_true, y_pred,...) Accuracy classification score.
auc(x,y) Compute Area Under the Curve (AUC) using the trapezoidal rule
average_precision_score(y_true,y_score) Compute average precision (AP) from prediction scores
balanced_accuracy_score(y_true,y_pred) Compute the balanced accuracy
brier_score_loss(y_true,y_prob,...) Compute the Brier score.
classification_report(y_true,y_pred) Build a text report showing the main classification metrics
cohen_kappa_score(y1,y2,...) Cohen’s kappa: a statistic that measures inter-annotator agreement.
confusion_matrix(y_true,y_pred,...) Compute confusion matrix to evaluate the accuracy of a classification.
dcg_score(y_true,y_score , k, ... ) Compute Discounted Cumulative Gain.
f1_score(y_true,y_pred,...) Compute the F1 score, also known as balanced F-score or F-measure
fbeta_score(y_true,y_pred, beta,...) Compute the F-beta score
hamming_loss(y_true,y_pred,...) Compute the average Hamming loss.
hinge_loss(y_true, pred_decision,...) Average hinge loss (non-regularized)
jaccard_score(y_true,y_pred,...) Jaccard similarity coefficient score
log_loss(y_true,y_pred , eps, ... ) Log loss, aka logistic loss or cross-entropy loss.
matthews_corrcoef(y_true,y_pred,...) Compute the Matthews correlation coefficient (MCC)
multilabel_confusion_matrix(y_true, ...) Compute a confusion matrix for each class or sample
ndcg_score(y_true,y_score , k, ... ) Compute Normalized Discounted Cumulative Gain.
precision_recall_curve(y_true, ...) Compute precision-recall pairs for different probability thresholds
precision_recall_fscore_support(...) Compute precision, recall, F-measure and support for each class
precision_score(y_true,y_pred,...) Compute the precision
recall_score(y_true,y_pred,...) Compute the recall
roc_auc_score(y_true,y_score,...) Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.
roc_curve(y_true,y_score,...) Compute Receiver operating characteristic (ROC)
zero_one_loss(y_true,y_pred,...) Zero-one classification loss.
##### Regression metrics
explained_variance_score(y_true,y_pred) Explained variance regression score function
max_error(y_true,y_pred) max_error metric calculates the maximum residual error.
mean_absolute_error(y_true,y_pred) Mean absolute error regression loss
mean_squared_error(y_true,y_pred,...) Mean squared error regression loss
mean_squared_log_error(y_true,y_pred) Mean squared logarithmic error regression loss
median_absolute_error(y_true,y_pred) Median absolute error regression loss
r2_score(y_true,y_pred,...) R^2 (coefficient of determination) regression score function.
mean_poisson_deviance(y_true,y_pred) Mean Poisson deviance regression loss.
mean_gamma_deviance(y_true,y_pred) Mean Gamma deviance regression loss.
mean_tweedie_deviance(y_true,y_pred) Mean Tweedie deviance regression loss.
##### Multilabel ranking metrics
coverage_error(y_true,y_score,...) Coverage error measure
label_ranking_average_precision_score(...) Compute ranking-based average precision
label_ranking_loss(y_true,y_score) Compute Ranking loss measure
##### Clustering metrics
supervised, which uses a ground truth class values for each sample.
unsupervised, which does not and measures the ‘quality’ of the model itself.
adjusted_mutual_info_score(...,...) Adjusted Mutual Information between two clusterings.
adjusted_rand_score(labels_true, ...) Rand index adjusted for chance.
calinski_harabasz_score(X, labels) Compute the Calinski and Harabasz score.
davies_bouldin_score(X, labels) Computes the Davies-Bouldin score.
completeness_score(labels_true, ...) Completeness metric of a cluster labeling given a ground truth.
cluster.contingency_matrix(...,...) Build a contingency matrix describing the relationship between labels.
fowlkes_mallows_score(labels_true, ...) Measure the similarity of two clusterings of a set of points.
homogeneity_completeness_v_measure(...) Compute the homogeneity and completeness and V-Measure scores at once.
homogeneity_score(labels_true, ...) Homogeneity metric of a cluster labeling given a ground truth.
mutual_info_score(labels_true, ...) Mutual Information between two clusterings.
normalized_mutual_info_score(...,...) Normalized Mutual Information between two clusterings.
silhouette_score(X, labels,...) Compute the mean Silhouette Coefficient of all samples.
silhouette_samples(X, labels , metric ) Compute the Silhouette Coefficient for each sample.
v_measure_score(labels_true, labels_pred) V-measure cluster labeling given a ground truth.
Biclustering metrics
consensus_score(a, b , similarity ) The similarity of two sets of biclusters.
Pairwise metrics
pairwise.additive_chi2_kernel(X ,y ) Computes the additive chi-squared kernel between observations in X and Y
pairwise.chi2_kernel(X ,y, gamma ) Computes the exponential chi-squared kernel X and Y.
pairwise.cosine_similarity(X ,y, ... ) Compute cosine similarity between samples in X and Y.
pairwise.cosine_distances(X ,y ) Compute cosine distance between samples in X and Y.
pairwise.distance_metrics() Valid metrics for pairwise_distances.
pairwise.euclidean_distances(X ,y, ... ) Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors.
pairwise.haversine_distances(X ,y ) Compute the Haversine distance between samples in X and Y
pairwise.kernel_metrics() Valid metrics for pairwise_kernels
pairwise.laplacian_kernel(X ,y, gamma ) Compute the laplacian kernel between X and Y.
pairwise.linear_kernel(X ,y, ... ) Compute the linear kernel between X and Y.
pairwise.manhattan_distances(X ,y, ... ) Compute the L1 distances between the vectors in X and Y.
pairwise.nan_euclidean_distances(X) Calculate the euclidean distances in the presence of missing values.
pairwise.pairwise_kernels(X ,y, ... ) Compute the kernel between arrays X and optional array Y.
pairwise.polynomial_kernel(X ,y, ... ) Compute the polynomial kernel between X and Y.
pairwise.rbf_kernel(X ,y, gamma ) Compute the rbf (gaussian) kernel between X and Y.
pairwise.sigmoid_kernel(X ,y, ... ) Compute the sigmoid kernel between X and Y.
pairwise.paired_euclidean_distances(X,y) Computes the paired euclidean distances between X and Y
pairwise.paired_manhattan_distances(X,y) Compute the L1 distances between the vectors in X and Y.
pairwise.paired_cosine_distances(X,y) Computes the paired cosine distances between X and Y
pairwise.paired_distances(X,y , metric ) Computes the paired distances between X and Y.
pairwise_distances(X ,y, metric, ... ) Compute the distance matrix from a vector array X and optional Y.
pairwise_distances_argmin(X,y,...) Compute minimum distances between one point and a set of points.
pairwise_distances_argmin_min(X,y) Compute minimum distances between one point and a set of points.
pairwise_distances_chunked(X ,y, ... ) Generate a distance matrix chunk by chunk with optional reduction