Skip to main content

Common metrics for common audio/music processing tasks.

Project description

https://anaconda.org/conda-forge/mir_eval/badges/version.svg https://img.shields.io/pypi/v/mir_eval.svg https://github.com/mir-evaluation/mir_eval/actions/workflows/test.yml/badge.svg https://codecov.io/gh/mir-evaluation/mir_eval/graph/badge.svg?token=OzRL3aW7TX https://img.shields.io/pypi/l/mir_eval.svg

mir_eval

Python library for computing common heuristic accuracy scores for various music/audio information retrieval/signal processing tasks.

Documentation, including installation and usage information: https://mir-evaluation.github.io/mir_eval/

Dependencies:

If you use mir_eval in a research project, please cite the following paper:

Colin Raffel, Brian McFee, Eric J. Humphrey, Justin Salamon, Oriol Nieto, Dawen Liang, and Daniel P. W. Ellis, “mir_eval: A Transparent Implementation of Common MIR Metrics”, Proceedings of the 15th International Conference on Music Information Retrieval, 2014.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page