skip to navigation
skip to content

Not Logged In

numba 0.19.2

compiling Python code using LLVM

Numba is an Open Source NumPy-aware optimizing compiler for Python sponsored by Continuum Analytics, Inc. It uses the remarkable LLVM compiler infrastructure to compile Python syntax to machine code.

It is aware of NumPy arrays as typed memory regions and so can speed-up code using NumPy arrays. Other, less well-typed code will be translated to Python C-API calls effectively removing the “interpreter” but not removing the dynamic indirection.

Numba is also not a tracing JIT. It compiles your code before it gets run either using run-time type information or type information you provide in the decorator.

Numba is a mechanism for producing machine code from Python syntax and typed data structures such as those that exist in NumPy.

Dependencies

  • llvmlite
  • numpy (version 1.6 or higher)
  • argparse (for pycc in python2.6)
  • funcsigs (for Python 2)

Installing

The easiest way to install numba and get updates is by using the Anaconda Distribution: https://store.continuum.io/cshop/anaconda/

$ conda install numba

If you wanted to compile Numba from source, it is recommended to use conda environment to maintain multiple isolated development environments. To create a new environment for Numba development:

$ conda create -p ~/dev/mynumba python numpy llvmlite

To select the installed version, append “=VERSION” to the package name, where, “VERSION” is the version number. For example:

$ conda create -p ~/dev/mynumba python=2.7 numpy=1.6 llvmlite

to use Python 2.7 and Numpy 1.6.

If you need CUDA support, you should also install the CUDA toolkit:

$ conda install cudatoolkit

This installs the CUDA Toolkit version 6.0, which requires driver version 331.00 or later to be installed.

Custom Python Environments

If you’re not using conda, you will need to build llvmlite yourself:

Building and installing llvmlite

See https://github.com/numba/llvmlite for the most up-to-date instructions. You will need a build of LLVM 3.5.

$ git clone https://github.com/numba/llvmlite
$ cd llvmlite
$ python setup.py install

Installing Numba

$ git clone https://github.com/numba/numba.git
$ cd numba
$ pip install -r requirements.txt
$ python setup.py build_ext --inplace
$ python setup.py install

or simply

$ pip install numba

If you want to enable CUDA support, you will need to install CUDA Toolkit 6.0. After installing the toolkit, you might have to specify environment variables in order to override the standard search paths:

NUMBAPRO_CUDA_DRIVER
Path to the CUDA driver shared library
NUMBAPRO_NVVM
Path to the CUDA libNVVM shared library file
NUMBAPRO_LIBDEVICE
Path to the CUDA libNVVM libdevice directory which contains .bc files

Mailing Lists

Join the numba mailing list numba-users@continuum.io: https://groups.google.com/a/continuum.io/d/forum/numba-users

or access it through the Gmane mirror: http://news.gmane.org/gmane.comp.python.numba.user

Some old archives are at: http://librelist.com/browser/numba/

Website

See if our sponsor can help you (which can help this project): http://www.continuum.io

http://numba.pydata.org

Continuous Integration

https://travis-ci.org/numba/numba

 
File Type Py Version Uploaded on Size
numba-0.19.2.tar.gz (md5) Source 2015-06-09 562KB
  • Downloads (All Versions):
  • 346 downloads in the last day
  • 2184 downloads in the last week
  • 9649 downloads in the last month