Skip to main content

pandas-highcharts is a Python package which allows you to easily build Highcharts plots with pandas.DataFrame objects.

Project description

https://travis-ci.org/gtnx/pandas-highcharts.svg?branch=master https://coveralls.io/repos/gtnx/pandas-highcharts/badge.svg

What is it

pandas-highcharts is a Python package which allows you to easily build Highcharts plots with pandas.DataFrame objects.

Motivation

  • pandas is the best tool to handle data in Python

  • pandas is able to produce matplotlib plots. They work pretty well but have two major drawbacks

    • Not very web friendly

    • Pretty ugly

  • Highcharts produce nice, interactive plot in your browser and is very complete

Features

  • Same interface as DataFrame.plot

  • Following parameters are handled

    • data

    • x

    • y

    • kind

    • figsize

    • use_index

    • title

    • grid

    • legend

    • style

    • logx

    • logy

    • loglog

    • xticks

    • yticks

    • xlim

    • ylim

    • rot

    • fontsize

    • position

    • stacked

    • sort_columns

    • secondary_y

    • mark_right

  • Following parameters are not handled (yet) :

    • ax

    • ay

    • subplots

    • sharex

    • sharey

    • layout

    • colormap

    • colorbar

    • layout

    • table

    • yerr

    • xerr

    • kwds

  • You can specify those specific highcharts parameters:

    • tooltip

  • Static files (highcharts.js) are not embedded

Installation

Install the package using pip

pip install pandas-highcharts

Usage

Import it in your views

import pandas_highcharts
df = ... # create your dataframe here
chart = pandas_highcharts.serialize(df, render_to='my-chart', output_type='json')

In your templates

<div id="my-chart"></div>
<script type="text/javascript">
  new Highcharts.Chart({{chart|safe}});
</script>

Contributing

See CONTRIBUTING.rst for information on how to contribute to pandas-highcharts.

More examples

Some examples are available on nbviewer.

Please read the doc for DataFrame.plot.

For example, with the following dataset:

import pandas as pd
from pandas_highcharts.core import serialize
from pandas.compat import StringIO
dat = """ts;A;B;C
2015-01-01 00:00:00;27451873;29956800;113
2015-01-01 01:00:00;20259882;17906600;76
2015-01-01 02:00:00;11592256;12311600;48
2015-01-01 03:00:00;11795562;11750100;50
2015-01-01 04:00:00;9396718;10203900;43
2015-01-01 05:00:00;14902826;14341100;53"""
df = pd.read_csv(StringIO(dat), sep=';', index_col='ts', parse_dates='ts')

# Basic line plot
chart = serialize(df, render_to="my-chart", title="My Chart")
# Basic column plot
chart = serialize(df, render_to="my-chart", title="Test", kind="bar")
# Basic column plot
chart = serialize(df, render_to="my-chart", title="Test", kind="barh")
# Plot C on secondary axis
chart = serialize(df, render_to="my-chart", title="Test", secondary_y = ["C"])
# Plot on a 1000x700 div
chart = serialize(df, render_to="my-chart", title="Test", figsize = (1000, 700))

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page