skip to navigation
skip to content

pyemd 0.2.0

A Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance.

PyEMD is a Python wrapper for Ofir Pele and Michael Werman’s implementation of the Earth Mover’s Distance that allows it to be used with NumPy. If you use this code, please cite the papers listed at the end of this document.

This wrapper does not expose the full functionality of the underlying implementation; it can only used be with the np.float data type, and with a symmetric distance matrix that represents a true metric. See the documentation for the original Pele and Werman library for the other options it provides.


To install the latest release:

pip install pyemd

To install the latest development version:

pip install "git+"


Use PyEMD like so:

>>> from pyemd import emd
>>> import numpy as np
>>> first_signature = np.array([0.0, 1.0])
>>> second_signature = np.array([5.0, 3.0])
>>> distance_matrix = np.array([[0.0, 0.5], [0.5, 0.0]])
>>> emd(first_signature, second_signature, distance_matrix)


emd(first_signature, second_signature, distance_matrix)
  • first_signature: A 1-dimensional numpy array of np.float, of size N.
  • second_signature: A 1-dimensional numpy array of np.float, of size N.
  • distance_matrix: A 2-dimensional array of np.float, of size NxN. Must be symmetric and represent a metric.

Limitations and Caveats

  • distance_matrix must be symmetric.
  • distance_matrix is assumed to represent a true metric. This must be enforced by the caller. See the documentation in pyemd/lib/emd_hat.hpp.
  • The signatures and distance matrix must be numpy arrays of np.float. The original C++ template function can accept any numerical C++ type, but this wrapper only instantiates the template with double (Cython converts np.float to double). If there’s demand, I can add support for other types.
  • The original C++ functions have an optional parameter F to return the flow, which is not exposed by this wrapper. See the documentation in pyemd/lib/emd_hat.hpp.


To help develop PyEMD, fork the project on GitHub and install the requirements with pip.

The Makefile defines some tasks to help with development:

  • buildcython: compiles the Cython code into C++ and then builds the C++ into a Python extension
  • runtests: builds everything and then runs the unit tests
  • clean: removes the compiled C++


  • All credit for the actual algorithm and implementation goes to Ofir Pele and Michael Werman. See the relevant paper.
  • Thanks to the Cython devlopers for making this kind of wrapper relatively easy to write.

Please cite these papers if you use this code:

Ofir Pele and Michael Werman, “A linear time histogram metric for improved SIFT matching,” in Computer Vision–ECCV 2008, Marseille, France, 2008, pp. 495-508.

  title={A linear time histogram metric for improved sift matching},
  author={Pele, Ofir and Werman, Michael},
  booktitle={Computer Vision--ECCV 2008},

Ofir Pele and Michael Werman, “Fast and robust earth mover’s distances,” in Proc. 2009 IEEE 12th Int. Conf. on Computer Vision, Kyoto, Japan, 2009, pp. 460-467.

  title={Fast and robust earth mover's distances},
  author={Pele, Ofir and Werman, Michael},
  booktitle={2009 IEEE 12th International Conference on Computer Vision},
File Type Py Version Uploaded on Size
pyemd-0.2.0-cp34-cp34m-macosx_10_10_x86_64.whl (md5, pgp) Python Wheel 3.4 2015-11-09 52KB
pyemd-0.2.0.tar.gz (md5, pgp) Source 2015-11-09 51KB
  • Downloads (All Versions):
  • 36 downloads in the last day
  • 362 downloads in the last week
  • 1540 downloads in the last month