Skip to main content

Library for making Weka algorithms available within scikit-learn. Relies on the python-weka-wrapper3 library.

Project description

The sklearn-weka-plugin library integrates Weka algorithms in scikit-learn using Python 3. It makes use of the python-weka-wrapper3 library for handling the Java Virtual Machine.

Examples can be found at:

https://github.com/fracpete/sklearn-weka-plugin-examples

Changelog

0.1.0 (2024-07-12)

  • requiring python-weka-wrapper3 >= 0.3.0 now (jpype-based)

0.0.8 (2024-04-08)

0.0.7 (2023-07-07)

  • WekaEstimator (module sklweka.classifiers) now has a custom score method that distinguishes between classification and regression to return the correct score.

  • renamed data to X and targets to y, since some sklearn schemes use named arguments

  • added dummy argument sample_weight=None to fit, score and fit_predict methods

  • fixed: when supplying Classifier or JBObject instead of classname/options, classname/options now get determined automatically

  • method to_instance (module: sklweka.dataset) now performs correct missing value check

  • method to_nominal_labels (module: sklweka.dataset) generates nicer labels now

0.0.6 (2022-04-26)

  • WekaEstimator (module sklweka.classifiers) and WekaCluster (module sklweka.clusters) now allow specifying how many labels a particular nominal attribute or class attribute has (to avoid error message like Cannot handle unary class attribute! if there is only one label present in a particular split)

0.0.5 (2022-04-01)

  • the to_nominal_attributes method in the sklearn.dataset module requires now the indices parameter (incorrectly declared as optional); can parse a range string now as well

  • fixed the fit, set_params and __str__ methods fo the MakeNominal transformer (module sklweka.preprocessing)

  • WekaEstimator (module sklweka.classifiers) and WekaCluster (module sklweka.clusters) now allow specifying which attributes to turn into nominal ones, which avoids having to manually convert the data (either as list with 0-based indices or range string with 1-based indices)

  • set_params methods now ignore empty dictionaries

0.0.4 (2021-12-17)

  • fixed sorting of labels in to_instances method in module sklweka.dataset

  • redoing X when no class present in load_arff method (module sklweka.dataset)

  • added load_dataset method in module sklweka.dataset that uses Weka to load the data before converting it into sklearn data structures (slower, but more flexible)

0.0.3 (2021-10-26)

  • added support for generating data via Weka’s data generators

0.0.2 (2021-04-12)

  • requiring python-weka-wrapper3 version 0.2.1 at least in order to offer pickle support

0.0.1 (2021-03-28)

  • initial release

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page