skip to navigation
skip to content

warp_prism 0.1.1

Quickly move data from postgres to numpy or pandas.

Quickly move data from postgres to numpy or pandas.

API

to_arrays(query, *, bind=None)

Run the query returning a the results as np.ndarrays.

Parameters
----------
query : sa.sql.Selectable
    The query to run. This can be a select or a table.
bind : sa.Engine, optional
    The engine used to create the connection. If not provided
    ``query.bind`` will be used.

Returns
-------
arrays : dict[str, (np.ndarray, np.ndarray)]
    A map from column name to the result arrays. The first array holds the
    values and the second array is a boolean mask for NULLs. The values
    where the mask is False are 0 interpreted by the type.

to_dataframe(query, *, bind=None, null_values=None)

Run the query returning a the results as a pd.DataFrame.

Parameters
----------
query : sa.sql.Selectable
    The query to run. This can be a select or a table.
bind : sa.Engine, optional
    The engine used to create the connection. If not provided
    ``query.bind`` will be used.
null_values : dict[str, any]
    The null values to use for each column. This falls back to
    ``warp_prism.null_values`` for columns that are not specified.

Returns
-------
df : pd.DataFrame
    A pandas DataFrame holding the results of the query. The columns
    of the DataFrame will be named the same and be in the same order as the
    query.

register_odo_dataframe_edge()

Register an odo edge for sqlalchemy selectable objects to dataframe.

This edge will have a lower cost that the default edge so it will be
selected as the fasted path.

If the selectable is not in a postgres database, it will fallback to the
default odo edge.

Comparisons

A quick comparison between warp_prism, odo, and pd.read_sql_table.

In this example we will read real data for VIX from quandl stored in a local postgres database using warp_prism, odo, and pd.read_sql_table. After that, we will use odo to create a table with two float columns and 1000000 rows and query it with the tree tools again.

In [1]: import warp_prism

In [2]: from odo import odo, resource

In [3]: import pandas as pd

In [4]: table = resource(
   ...:     'postgresql://localhost/bz::yahoo_index_vix',
   ...:     schema='quandl',
   ...: )

In [5]: warp_prism.to_dataframe(table).head()
Out[5]:
   asof_date      open_       high        low      close  volume  \
0 2016-01-08  22.959999  27.080000  22.480000  27.010000     0.0
1 2015-12-04  17.430000  17.650000  14.690000  14.810000     0.0
2 2015-10-29  14.800000  15.460000  14.330000  14.610000     0.0
3 2015-12-21  19.639999  20.209999  18.700001  18.700001     0.0
4 2015-10-26  14.760000  15.430000  14.680000  15.290000     0.0

   adjusted_close                  timestamp
0       27.010000 2016-01-11 23:14:54.682220
1       14.810000 2016-01-11 23:14:54.682220
2       14.610000 2016-01-11 23:14:54.682220
3       18.700001 2016-01-11 23:14:54.682220
4       15.290000 2016-01-11 23:14:54.682220

In [6]: odo(table, pd.DataFrame).head()
Out[6]:
   asof_date      open_       high        low      close  volume  \
0 2016-01-08  22.959999  27.080000  22.480000  27.010000     0.0
1 2015-12-04  17.430000  17.650000  14.690000  14.810000     0.0
2 2015-10-29  14.800000  15.460000  14.330000  14.610000     0.0
3 2015-12-21  19.639999  20.209999  18.700001  18.700001     0.0
4 2015-10-26  14.760000  15.430000  14.680000  15.290000     0.0

   adjusted_close                  timestamp
0       27.010000 2016-01-11 23:14:54.682220
1       14.810000 2016-01-11 23:14:54.682220
2       14.610000 2016-01-11 23:14:54.682220
3       18.700001 2016-01-11 23:14:54.682220
4       15.290000 2016-01-11 23:14:54.682220

In [7]: pd.read_sql_table(table.name, table.bind, table.schema).head()
Out[7]:
   asof_date      open_       high        low      close  volume  \
0 2016-01-08  22.959999  27.080000  22.480000  27.010000     0.0
1 2015-12-04  17.430000  17.650000  14.690000  14.810000     0.0
2 2015-10-29  14.800000  15.460000  14.330000  14.610000     0.0
3 2015-12-21  19.639999  20.209999  18.700001  18.700001     0.0
4 2015-10-26  14.760000  15.430000  14.680000  15.290000     0.0

   adjusted_close                  timestamp
0       27.010000 2016-01-11 23:14:54.682220
1       14.810000 2016-01-11 23:14:54.682220
2       14.610000 2016-01-11 23:14:54.682220
3       18.700001 2016-01-11 23:14:54.682220
4       15.290000 2016-01-11 23:14:54.682220

In [8]: len(warp_prism.to_dataframe(table))
Out[8]: 6565

In [9]: %timeit warp_prism.to_dataframe(table)
100 loops, best of 3: 7.55 ms per loop

In [10]: %timeit odo(table, pd.DataFrame)
10 loops, best of 3: 49.9 ms per loop

In [11]: %timeit pd.read_sql_table(table.name, table.bind, table.schema)
10 loops, best of 3: 61.8 ms per loop

In [12]: big_table = odo(
    ...:     pd.DataFrame({
    ...:         'a': np.random.rand(1000000),
    ...:         'b': np.random.rand(1000000)},
    ...:     ),
    ...:     'postgresql://localhost/test::largefloattest',
    ...: )

In [13]: %timeit warp_prism.to_dataframe(big_table)
1 loop, best of 3: 248 ms per loop

In [14]: %timeit odo(big_table, pd.DataFrame)
1 loop, best of 3: 1.51 s per loop

In [15]: %timeit pd.read_sql_table(big_table.name, big_table.bind)
1 loop, best of 3: 1.9 s per loop

Installation

Warp Prism can be pip installed but requires numpy to build its C extensions:

$ pip install numpy
$ pip install warp_prism

License

Warp Prism is licensed under the Apache 2.0.

Warp Prism is sponsored by Quantopian where it is used to fetch data for use in Zipline through the Pipeline API or interactively with Blaze.

 
File Type Py Version Uploaded on Size
warp_prism-0.1.1.tar.gz (md5) Source 2017-03-02 11KB