Skip to main content

A package for calculating submatricies, minors, adjugate- and cofactor matricies.

Project description

adjugate

A package for calculating submatricies, minors, adjugate- and cofactor matricies.

import numpy as np
from adjugate import adj

M = np.random.rand(4, 4)
adjM = adj(M)
M, adjM
(array([[0.46445212, 0.90776864, 0.5617845 , 0.46365445],
        [0.23096052, 0.37817574, 0.19684724, 0.26416446],
        [0.8157284 , 0.35109541, 0.29357478, 0.63978973],
        [0.97616731, 0.71221494, 0.18073805, 0.7949908 ]]),
 array([[ 0.04081465, -0.13855441,  0.00220198,  0.0204637 ],
        [ 0.01427584, -0.02328107, -0.02248499,  0.01750541],
        [ 0.01310092, -0.00671938,  0.02476545, -0.02533861],
        [-0.06588407,  0.19251526,  0.01180968, -0.02407058]]))

Installation

pip install adjugate

Usage

This package provides four functions:

submatrix

submatrix(M, i, j)

Removes the i-th row and j-th column of M. Multiple indices or slices can be provided.

from adjugate import submatrix

M = np.arange(16).reshape(4, 4)
M, submatrix(M, 1, 2)
(array([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11],
        [12, 13, 14, 15]]),
 array([[ 0,  1,  3],
        [ 8,  9, 11],
        [12, 13, 15]]))

minor

minor(M, i, j)

Calculates the (i, j) minor of M.

from adjugate import minor

M = np.random.rand(4, 4)
minor(M, 1, 2)
-0.2140487789380897

adj

adj(M)

Calculates the adjugate of M.

M, adj(M)
(array([[0.08665864, 0.99394655, 0.12535963, 0.26405097],
        [0.5579125 , 0.86322768, 0.89414941, 0.568058  ],
        [0.67013036, 0.84454395, 0.47131153, 0.19339756],
        [0.66467323, 0.85295762, 0.13306573, 0.5569822 ]]),
 array([[-0.23323852, -0.12057808,  0.24929258,  0.14698786],
        [ 0.21400119, -0.06933021,  0.09234215, -0.06280701],
        [-0.03500821,  0.21404878,  0.04025053, -0.21568468],
        [-0.04102134,  0.19892593, -0.44852065,  0.29057721]]))

cof

cof(M)

Calculates the cofactor matrix of M.

from adjugate import cof

M, cof(M)
(array([[0.08665864, 0.99394655, 0.12535963, 0.26405097],
        [0.5579125 , 0.86322768, 0.89414941, 0.568058  ],
        [0.67013036, 0.84454395, 0.47131153, 0.19339756],
        [0.66467323, 0.85295762, 0.13306573, 0.5569822 ]]),
 array([[-0.23323852,  0.21400119, -0.03500821, -0.04102134],
        [-0.12057808, -0.06933021,  0.21404878,  0.19892593],
        [ 0.24929258,  0.09234215,  0.04025053, -0.44852065],
        [ 0.14698786, -0.06280701, -0.21568468,  0.29057721]]))

Speed

If you know that you matrix is invertible, then np.linalg.det(M) * np.linalg.inv(M) might be a faster choice (O(3) instad of O(5)). But this is in general, especially as the determinant approaches zero, not possible or precise:

import matplotlib.pyplot as plt

N = 20
dets, errs = [], []
for _ in range(10000):
    M = np.random.rand(N, N)
    dets += [np.linalg.det(M)]
    errs += [np.linalg.norm(adj(M)-np.linalg.det(M)*np.linalg.inv(M))]

fig, ax = plt.subplots()
ax.scatter(dets, errs, marker='o', s=(72./fig.dpi)**2)
ax.set_yscale('log')
ax.set_xlim(-2, +2)
ax.set_ylim(1e-16, 1e-12)
ax.set_xlabel('det')
ax.set_ylabel('err')
plt.show()

png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

adjugate-0.9.1.tar.gz (3.4 kB view hashes)

Uploaded Source

Built Distribution

adjugate-0.9.1-py3-none-any.whl (3.4 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page