Skip to main content

A collection of the state-of-the-art MEta-heuristics ALgorithms in PYthon (mealpy)

Project description

The state-of-the-art MEta-heuristics ALgorithms in PYthon (MEALPY)

GitHub release Wheel PyPI version DOI License

"Knowledge is power, sharing it is the premise of progress in life. It seems like a burden to someone, but it is the only way to achieve immortality." --- Nguyen Van Thieu


Quick Notification

  • Current version: 1.2.1

  • There are a big different between version (>= 1.1.0) and previous version (< 1.0.5) in term of passing hyper-parameters. So please careful check your version before using this library.

  • If you guys are familiar with writing documentation and would like to join this project. Please send me an email to nguyenthieu2102@gmail.com. Your contribution to this project is greatly appreciated.

  • If you guys want me to implement new algorithm, please open an Issues ticket, and better send me an PDF of the original paper so I can read and implement it.

Introduction

  • MEALPY is a largest python module for the most of cutting-edge nature-inspired meta-heuristic algorithms (population-based) and is distributed under MIT license.

  • But this library for solving single (uni or 1) objective optimization problem only. If you are facing multiple/many objective optimization problems (Finding a Pareto front or reference front) check out my new library "momapy" (A collection of the state-of-the-art Multiple/Many Objective Metaheuristic Algorithms in PYthon). "MOMAPY" will be hosted here: link

  • The goals of this framework are:

    • Sharing knowledge of meta-heuristic fields to everyone without a fee
    • Helping other researchers in all field access to optimization algorithms as quickly as possible
    • Implement the classical as well as the state-of-the-art meta-heuristics (The whole history of meta-heuristics, currently including almost 100 algorithms)
  • What you can do with this library:

    • Analyse parameters of algorithms.
    • Perform Qualitative Analysis of algorithms.
    • Perform Quantitative Analysis of algorithms.
    • Analyse rate of convergence of algorithms.
    • Test the scalability of algorithms.
    • Analyse the stability of algorithms.
    • Analyse the robustness of algorithms.
  • And please giving me some credit if you are using this library. Lots of people just use it without reference.

@software{thieu_nguyen_2020_3711949,
  author       = {Nguyen Van Thieu},
  title        = {A collection of the state-of-the-art MEta-heuristics ALgorithms in PYthon: Mealpy},
  month        = march,
  year         = 2020,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.3711948},
  url          = {https://doi.org/10.5281/zenodo.3711948}
}

and if you want to cite my paper, take a look at some of my first-author paper here: link

Installation

Dependencies

  • Python (>= 3.6)
  • Numpy (>= 1.15.1)
  • Scipy (>= 1.4.1)

User installation

Install the current PyPI release:

    pip install mealpy
    pip install --upgrade mealpy 

Or install the development version from GitHub:

    pip install git+https://github.com/thieu1995/mealpy

Example

  • Please don't misunderstand between parameters (hyper-parameters) and variables.

  • Assumption that you have to find minimum of function F(x) = x1^3 + x2^2 + x3^4 with (-1 <= x1 <= 4), (5 <= x2 <= 10) and (-7 <= x2 <= -4). Then

    • Your solution is x = [x1, x2, x3], x1, x2, x3 here are the variables.
    • The number of dimension (problem size) = 3 (variables)
    • Your fitness value is fx = F(x)
    • lower bound and upper bound: lb = [-1, 5, -7] and ub = [4, 10, -4]
    • parameters (hyper-parameters) is depended on each algorithm.
    • objective function here is F(x) for minimize problem.
# Define an objective function, for example above:
def Fx(solution):
  fx = solution[0] ** 3 + solution[1] ** 2 + solution[2] ** 4
  return fx 
# This is basic example how you can call an optimizer, and its variants. For the version ( MEALPY >= 1.1.0)

from opfunu.cec_basic.cec2014_nobias import *
from mealpy.swarm_based.PSO import BasePSO, PPSO, P_PSO, HPSO_TVAC

# Setting parameters
obj_func = F5  # This objective function come from "opfunu" library. You can design your own objective function like above
verbose = False  # Print out the training results
epoch = 500  # Number of iterations / generations / epochs
pop_size = 50  # Populations size (Number of individuals / Number of solutions)

# A - Different way to provide lower bound and upper bound. Here are some examples:

## 1. When you have different lower bound and upper bound for each variables
lb1 = [-3, -5, 1]
ub1 = [5, 10, 100]

md1 = BasePSO(obj_func, lb1, ub1, verbose, epoch, pop_size)
best_pos1, best_fit1, list_loss1 = md1.train()
print(md1.solution[1])

## 2. When you have same lower bound and upper bound for each variables, then you can use:
##      + int or float: then you need to specify your problem size (number of dimensions)
problemSize = 10
lb2 = -5
ub2 = 10
md2 = BasePSO(obj_func, lb2, ub2, verbose, epoch, pop_size,
              problem_size=problemSize)  # Remember the keyword "problem_size"
best_pos1, best_fit1, list_loss1 = md2.train()
print(md2.solution[1])

##      + array: 2 ways
lb3 = [-5]
ub3 = [10]
md3 = BasePSO(obj_func, lb3, ub3, verbose, epoch, pop_size,
              problem_size=problemSize)  # Remember the keyword "problem_size"
best_pos1, best_fit1, list_loss1 = md3.train()
print(md3.solution[1])

lb4 = [-5] * problemSize
ub4 = [10] * problemSize
md4 = BasePSO(obj_func, lb4, ub4, verbose, epoch, pop_size)  # No need the keyword "problem_size"
best_pos1, best_fit1, list_loss1 = md4.train()
print(md4.solution[1])

# B - Test with algorithm has batch size idea

## 1. Not using batch size idea

md5 = BasePSO(obj_func, lb4, ub4, verbose, epoch, pop_size)
best_pos1, best_fit1, list_loss1 = md5.train()
print(md1.solution[0])
print(md1.solution[1])
print(md1.loss_train)

## 2. Using batch size idea
batchIdea = True
batchSize = 5

md6 = BasePSO(obj_func, lb4, ub4, verbose, epoch, pop_size, batch_idea=batchIdea,
              batch_size=batchSize)  # Remember the keywords
best_pos1, best_fit1, list_loss1 = md6.train()
print(md1.solution[0])
print(md1.solution[1])
print(md1.loss_train)

# C - Test with different variants of this algorithm

md1 = PPSO(obj_func, lb4, ub4, verbose, epoch, pop_size)
best_pos1, best_fit1, list_loss1 = md1.train()
print(md1.solution[0])
print(md1.solution[1])
print(md1.loss_train)

md1 = PSO_W(obj_func, lb4, ub4, verbose, epoch, pop_size)
best_pos1, best_fit1, list_loss1 = md1.train()
print(md1.solution[0])
print(md1.solution[1])
print(md1.loss_train)

md1 = HPSO_TVA(obj_func, lb4, ub4, verbose, epoch, pop_size)
best_pos1, best_fit1, list_loss1 = md1.train()
print(md1.solution[0])
print(md1.solution[1])
print(md1.loss_train)
  • The batch-size idea is not existed in Meta-heuristics field. I just take an inspiration from training batch-size of neural network field and combine it with metaheuristics. Therefore, some algorithms will have it, some won't. Don't worry, if you don't want to use it, just call the algorithm like usual, you don't need to specify any additional parameters. But if you want to use it, check the example above, you need to specify some additional hyper-parameters.

  • And PLEASE read some examples inside folder "examples" before email asking me how to call the optimizer. Lots of simple and complicated examples there. Take your time to learn how to use it.

# Simple example: this is for previous version ( version <= 1.0.5)

from opfunu.cec_basic.cec2014_nobias import *
from mealpy.evolutionary_based.GA import BaseGA

## Setting parameters
obj_func = F1
# lb = [-15, -10, -3, -15, -10, -3, -15, -10, -3, -15, -10, -3, -15, -10, -3]
# ub = [15, 10, 3, 15, 10, 3, 15, 10, 3, 15, 10, 3, 15, 10, 3]
lb = [-100]
ub = [100]
problem_size = 100
batch_size = 25
verbose = True
epoch = 1000
pop_size = 50
pc = 0.95
pm = 0.025

md1 = BaseGA(obj_func, lb, ub, problem_size, batch_size, verbose, epoch, pop_size, 0.85, 0.05)
best_pos1, best_fit1, list_loss1 = md1.train()
print(md1.solution[0])
print(md1.solution[1])
print(md1.loss_train)

# Or run the simple:
python examples/run_simple.py

Changelog

  • See the "ChangeLog.md" for a history of notable changes to mealpy.

Important links

Contributions

Documents

  • Meta-heuristic Categories: (Based on this article: link)

    • Evolutionary: Evolutionary-based
    • Swarm: Swarm-based
    • Physics: Physics-based
    • Human: Human-based
    • Bio: Biology-based
    • System: System-based (eco-system, immune-system, network-system, ...)
    • Math: Math-based
    • Music: Music-based
    • Probabilistic: Probabilistic based algorithm
    • Dummy: Non-sense algorithms and Non-sense papers (code proofs)
      • All algorithms in this library were implemented by me (my code). Including the original version (I read the paper and implement it). Some original papers are very unclear (parameters, equations, algorithm's flow) as I categories it to dummy papers and algorithms (I have already checked carefully the paper, the related papers and searched for Matlab code or any programming code for it).
  • Version: Most of the algorithms have the Original version and Base version.

    • original: Taken exactly from the paper
    • changed: Sometimes I changed the flow or how the new solution created/updated (equations) or remove some unnecessary parameters to make algorithm works
  • Batch size idea (Personal Choice): Explained in the ChangeLog.md file and above. An algorithm can used it or not.

  • Levy: Using levy-flight technique or not

  • Type (Personal Opinion): (Based on performance of Base version. The Base version can be Original version)

    • weak: working fine with uni-modal and some multi-modal functions
    • strong: working good with uni-modal, multi-modal, some hybrid and some composite functions
    • best: working well with almost all kind of functions
    • BEST: the best among all algorithms
  • Large-scale (Personal Opinion):

    • All algorithm here have been tested with large-scale dimension (2000)
    • Remember in CEC competition:
      • Normal test: 10, 50, 100
      • Large-scale: 100, 500, 1000
  • Paras: The number of parameters in the algorithm (Not counting the fixed parameters in the original paper)

    • Almost algorithms have 2 paras (epoch, population_size) and plus some paras depend on each algorithm.
    • Some algorithms belong to "best" or "BEST" type and have only 2 paras meaning the algorithms are outstanding
  • Difficulty - Difficulty Level (Personal Opinion): Objective observation from author. Depend on the number of parameters, number of equations, the original ideas, time spend for coding, source lines of code (SLOC).

    • Easy: A few paras, few equations, SLOC very short
    • Medium: more equations than Easy level, SLOC longer than Easy level
    • Hard: Lots of equations, SLOC longer than Medium level, the paper hard to read.
    • Hard* - Very hard: Lots of equations, SLOC too long, the paper is very hard to read.

** For newbie, I recommend to read the paper of algorithms belong to "best or strong" type, "easy or medium" difficulty level.

Group STT Name Short Year Version Batch Size Levy Type Large Scale Paras Difficulty
Evolutionary 1 Evolutionary Programming EP 1964 original no no weak no 3 easy
2 Evolution Strategies ES 1971 original no no weak no 3 easy
3 Memetic Algorithm MA 1989 original no no weak no 7 easy
3 Genetic Algorithm GA 1992 original no no strong no 4 easy
4 Differential Evolution DE 1997 original no no strong no 4 easy
5 Flower Pollination Algorithm FPA 2014 orginal yes yes strong no 3 easy
6 Coral Reefs Optimization CRO 2014 original no no strong no 7 medium
7
Swarm 1 Particle Swarm Optimization PSO 1995 original yes no strong yes 6 easy
2 Bacterial Foraging Optimization BFO 2002 orginal no no weak no 11 hard
3 Bees Algorithm BeesA 2005 original no no weak no 9 medium
4 Cat Swarm Optimization CSO 2006 original yes no weak no 9 hard
5 Ant Colony Optimization ACO 2006 original no no strong no 5 medium
6 Artificial Bee Colony ABC 2007 changed no no strong no 8 easy
7 Ant Colony Optimization ACO-R 2008 original no no strong no 5 medium
8 Cuckoo Search Algorithm CSA 2009 original no yes strong yes 3 easy
9 Firefly Algorithm FireflyA 2009 original no no strong no 8 medium
10 Fireworks Algorithm FA 2010 original no no strong no 7 medium
11 Bat Algorithm BA 2010 original yes no weak no 5 easy
12 Fruit-fly Optimization Algorithm FOA 2012 original no no WEAK no 2 easy
13 Social Spider Optimization SSO 2013 changed no no weak no 3 hard*
14 Grey Wolf Optimizer GWO 2014 original no no best yes 2 easy
15 Social Spider Algorithm SSA 2015 original yes no weak no 5 easy
16 Ant Lion Optimizer ALO 2015 original no no strong yes 2 medium
17 Moth Flame Optimization MFO 2015 changed no no strong no 2 easy
18 Elephant Herding Optimization EHO 2015 original no no best yes 5 easy
19 Jaya Algorithm JA 2016 orignal no no strong yes 2 easy
20 Whale Optimization Algorithm WOA 2016 original yes no BEST yes 2 easy
21 Dragonfly Optimization DO 2016 original no no strong no 2 medium
22 Bird Swarm Algorithm BSA 2016 original no no best yes 9 medium
23 Spotted Hyena Optimizer SHO 2017 changed no no weak no 6 medium
24 Salp Swarm Optimization SalpSO 2017 original no no strong no 2 easy
25 Swarm Robotics Search And Rescue SRSR 2017 original no no best yes 2 hard*
26 Grasshopper Optimisation Algorithm GOA 2017 original yes no weak no 3 easy
27 Moth Search Algorithm MSA 2018 changed no yes strong no 5 easy
28 Sea Lion Optimization SLO 2019 changed no no weak no 2 medium
29 Nake Mole-rat Algorithm NMRA 2019 original yes no strong yes 3 easy
30 Bald Eagle Search BES 2019 changed no no strong no 7 medium
31 Pathfinder Algorithm PFA 2019 original yes no best yes 2 easy
32 Sailfish Optimizer SFO 2019 original no no BEST yes 5 medium
33 Harris Hawks Optimization HHO 2019 original yes yes best yes 2 medium
34 Manta Ray Foraging Optimization MRFO 2020 original no no best yes 3 easy
35 Sparrow Search Algorithm SpaSA 2020 original no no BEST yes 5 medium
36 Hunger Games Search HGS 2021 original no no BEST yes 4 medium
37
Physics 1 Simulated Annealling SA 1987 original no no weak no 9 medium
2 Wind Driven Optimization WDO 2013 original yes no strong yes 7 easy
3 Multi-Verse Optimizer MVO 2016 changed yes no weak no 3 easy
4 Tug of War Optimization TWO 2016 original no no strong no 2 easy
5 Electromagnetic Field Optimization EFO 2016 original yes no strong yes 6 easy
6 Nuclear Reaction Optimization NRO 2019 original no yes best yes 2 hard*
7 Henry Gas Solubility Optimization HGSO 2019 original no no best yes 3 medium
8 Atom Search Optimization ASO 2019 original no no strong no 4 medium
9 Equilibrium Optimizer EO 2019 original no no BEST yes 2 easy
10
Human 1 Culture Algorithm CA 1994 original no no strong no 3 easy
2 Imperialist Competitive Algorithm ICA 2007 original no no strong yes 10 hard*
3 Teaching Learning Optimization TLO 2011 original yes no best yes 2 easy
4 Brain Storm Optimization BSO 2011 original no no weak no 10 medium
5 Queuing Search Algorithm QSA 2019 changed no no strong yes 2 hard
6 Search And Rescue Optimization SARO 2019 original yes no strong yes 4 medium
7 Life Choice-Based Optimization LCBO 2019 original yes no strong yes 2 easy
8 Social Ski-Driver Optimization SSDO 2019 original no no BEST yes 2 easy
9 Gaining Sharing Knowledge-based Algorithm GSKA 2019 original no no strong no 6 easy
10 Coronavirus Herd Immunity Optimization CHIO 2020 changed no no weak no 4 medium
11 Forensic-Based Investigation Optimization FBIO 2020 original no no best yes 2 medium
12 Battle Royale Optimization BRO 2020 original no no weak no 2 medium
13
Bio 1 Invasive Weed Optimization IWO 2006 original no no strong yes 5 easy
2 Biogeography-Based Optimization BBO 2008 changed no no strong yes 4 easy
3 Virus Colony Search VCS 2016 changed yes no best no 4 hard*
4 Satin Bowerbird Optimizer SBO 2017 changed yes no strong yes 5 easy
5 Earthworm Optimisation Algorithm EOA 2018 changed no no strong yes 8 medium
6 Wildebeest Herd Optimization WHO 2019 changed no no strong yes 12 medium
7 Slime Mould Algorithm SMA 2020 changed yes no strong yes 3 easy
8
System 1 Germinal Center Optimization GCO 2018 changed yes no strong yes 4 medium
2 Water Cycle Algorithm WCA 2012 original no no strong yes 5 medium
3 Artificial Ecosystem-based Optimization AEO 2019 changed yes no best yes 2 easy
4
Math 1 Hill Climbing HC 1993 original no no weak no 3 easy
2 Sine Cosine Algorithm SCA 2016 changed yes no strong no 2 easy
3
Music 1 Harmony Search HS 2001 changed yes no strong no 5 easy
2
Probabilistic 1 Cross-Entropy Method CEM 1997 original no no strong no 4 easy
2
Dummy Algorithms 1 Pigeon-Inspired Optimization PIO 2014 changed no no strong no 2 medium
2 Artificial Algae Algorithm AAA 2015 changed no no weak no 5 medium
3 Rhino Herd Optimization RHO 2018 original yes no strong yes 6 easy
4 Emperor Penguin Optimizer EPO 2018 changed yes no strong no 2 easy
5 Butterfly Optimization Algorithm BOA 2019 original no no weak no 6 medium
6 Blue Monkey Optimization BMO 2019 changed no no weak no 3 medium
7 Sandpiper Optimization Algorithm SOA 2020 changed no no weak no 2 easy
8 Black Widow Optimization BWO 2020 changed no no strong yes 5 medium

A

  • ABC - Artificial Bee Colony

    • BaseABC: Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization (Vol. 200, pp. 1-10). Technical report-tr06, Erciyes university, engineering faculty, computer engineering department.
  • ACOR - Ant Colony Optimization.

    • BaseACOR: Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European journal of operational research, 185(3), 1155-1173.
  • ALO - Ant Lion Optimizer

    • OriginalALO: Mirjalili S (2015). “The Ant Lion Optimizer.” Advances in Engineering Software, 83, 80-98. doi: 10.1016/j.advengsoft.2015.01.010
    • BaseALO: My version
  • AEO - Artificial Ecosystem-based Optimization

    • OriginalAEO: Zhao, W., Wang, L., & Zhang, Z. (2019). Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm. Neural Computing and Applications, 1-43.
    • BaseAEO: My modified version
    • AdaptiveAEO: My adaptive version
    • ImprovedAEO: Rizk-Allah, R. M., & El-Fergany, A. A. (2020). Artificial ecosystem optimizer for parameters identification of proton exchange membrane fuel cells model. International Journal of Hydrogen Energy.
    • EnhancedAEO: Eid, A., Kamel, S., Korashy, A., & Khurshaid, T. (2020). An Enhanced Artificial Ecosystem-Based Optimization for Optimal Allocation of Multiple Distributed Generations. IEEE Access, 8, 178493-178513.
    • ModifiedAEO: Menesy, A. S., Sultan, H. M., Korashy, A., Banakhr, F. A., Ashmawy, M. G., & Kamel, S. (2020). Effective parameter extraction of different polymer electrolyte membrane fuel cell stack models using a modified artificial ecosystem optimization algorithm. IEEE Access, 8, 31892-31909.
  • ASO - Atom Search Optimization

    • BaseASO: Zhao, W., Wang, L., & Zhang, Z. (2019). Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowledge-Based Systems, 163, 283-304.

B

  • BFO - Bacterial Foraging Optimization

    • OriginalBFO: Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed optimization and control. IEEE control systems magazine, 22(3), 52-67.
    • BaseBFO: Yan, X., Zhu, Y., Zhang, H., Chen, H., & Niu, B. (2012). An adaptive bacterial foraging optimization algorithm with lifecycle and social learning. Discrete Dynamics in Nature and Society, 2012.
  • BeesA - Bees Algorithm

    • BaseBeesA: Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2005). The bees algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK.
    • ProbBeesA: The probabilitic version of: Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees algorithm—a novel tool for complex optimisation problems. In Intelligent production machines and systems (pp. 454-459). Elsevier Science Ltd.
  • BBO - Biogeography-Based Optimization

    • OriginalBBO: Simon, D. (2008). Biogeography-based optimization. IEEE transactions on evolutionary computation, 12(6), 702-713.
    • BaseBBO: My version
  • BA - Bat Algorithm

    • BasicBA: Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (NICSO 2010) (pp. 65-74). Springer, Berlin, Heidelberg.
    • OriginalBA: The original version
    • BaseBA: My modified version
  • BSO - Brain Storm Optimization

    • BaseBSO: . Shi, Y. (2011, June). Brain storm optimization algorithm. In International conference in swarm intelligence (pp. 303-309). Springer, Berlin, Heidelberg.
    • ImprovedBSO: My improved version using levy-flight
  • BSA - Bird Swarm Algorithm

    • BaseBSA: Meng, X. B., Gao, X. Z., Lu, L., Liu, Y., & Zhang, H. (2016). A new bio-inspired optimisation algorithm:Bird Swarm Algorithm. Journal of Experimental & Theoretical Artificial Intelligence, 28(4), 673-687.
  • BES - Bald Eagle Search

    • BaseBES: Alsattar, H. A., Zaidan, A. A., & Zaidan, B. B. (2019). Novel meta-heuristic bald eagle search optimisation algorithm. Artificial Intelligence Review, 1-28.
  • BRO - Battle Royale Optimization

    • OriginalBRO: Rahkar Farshi, T. (2020). Battle royale optimization algorithm. Neural Computing and Applications, 1-19.
    • BaseBRO: My modified version

C

  • CA - Culture Algorithm

    • OriginalCA: Reynolds, R.G., 1994, February. An introduction to cultural algorithms. In Proceedings of the third annual conference on evolutionary programming (Vol. 24, pp. 131-139). River Edge, NJ: World Scientific.
  • CEM - Cross Entropy Method

    • BaseCEM: Rubinstein, R. (1999). The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability, 1(2), 127-190.
    • CEBaseLCBO: LCBO combine with CEM
    • CEBaseLCBONew: Improved LCBO combine with CEM
    • CEBaseSSDO: SSDO combine with CEM
    • CEBaseSBO: SBO combine with CEM
    • CEBaseFBIO: FBIO combine with CEM
    • CEBaseFBIONew: Improved FBIO combine with CEM
  • CSO - Cat Swarm Optimization

    • BaseCSO: Chu, S. C., Tsai, P. W., & Pan, J. S. (2006, August). Cat swarm optimization. In Pacific Rim international conference on artificial intelligence (pp. 854-858). Springer, Berlin, Heidelberg.
  • CSA - Cuckoo Search Algorithm

    • BaseCSA: Yang, X. S., & Deb, S. (2009, December). Cuckoo search via Lévy flights. In 2009 World congress on nature & biologically inspired computing (NaBIC) (pp. 210-214). Ieee.
  • CRO - Coral Reefs Optimization

    • BaseCRO: Salcedo-Sanz, S., Del Ser, J., Landa-Torres, I., Gil-López, S., & Portilla-Figueras, J. A. (2014). The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems. The Scientific World Journal, 2014.
    • OCRO: Nguyen, T., Nguyen, T., Nguyen, B. M., & Nguyen, G. (2019). Efficient time-series forecasting using neural network and opposition-based coral reefs optimization. International Journal of Computational Intelligence Systems, 12(2), 1144-1161.

D

  • DE - Differential Evolution

    • BaseDE: Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341-359.
    • JADE: Zhang, J., & Sanderson, A. C. (2009). JADE: adaptive differential evolution with optional external archive. IEEE Transactions on evolutionary computation, 13(5), 945-958.
    • SADE: Qin, A. K., & Suganthan, P. N. (2005, September). Self-adaptive differential evolution algorithm for numerical optimization. In 2005 IEEE congress on evolutionary computation (Vol. 2, pp. 1785-1791). IEEE.
    • SHADE: Tanabe, R., & Fukunaga, A. (2013, June). Success-history based parameter adaptation for differential evolution. In 2013 IEEE congress on evolutionary computation (pp. 71-78). IEEE.
    • L_SHADE: Tanabe, R., & Fukunaga, A. S. (2014, July). Improving the search performance of SHADE using linear population size reduction. In 2014 IEEE congress on evolutionary computation (CEC) (pp. 1658-1665). IEEE.
    • SAP_DE: Teo, J. (2006). Exploring dynamic self-adaptive populations in differential evolution. Soft Computing, 10(8), 673-686.
  • DSA - Differential Search Algorithm

    • BaseDSA: Civicioglu, P. (2012). Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Computers & Geosciences, 46, 229-247.
  • DO - Dragonfly Optimization

    • BaseDO: Mirjalili, S. (2016). Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27(4), 1053-1073.

E

  • ES - Evolution Strategies .

    • BaseES: Schwefel, H. P. (1984). Evolution strategies: A family of non-linear optimization techniques based on imitating some principles of organic evolution. Annals of Operations Research, 1(2), 165-167.
    • LevyES: My modified version using Levy-flight
  • EP - Evolutionary programming .

    • BaseEP: Fogel, L. J. (1994). Evolutionary programming in perspective: The top-down view. Computational intelligence: Imitating life.
    • LevyEP: My modified version using Levy-flight
  • EHO - Elephant Herding Optimization .

    • BaseEHO: Wang, G. G., Deb, S., & Coelho, L. D. S. (2015, December). Elephant herding optimization. In 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI) (pp. 1-5). IEEE.
    • LevyEHO: My modified version using Levy-flight
  • EFO - Electromagnetic Field Optimization .

    • OriginalEFO:Abedinpourshotorban, H., Shamsuddin, S. M., Beheshti, Z., & Jawawi, D. N. (2016). Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm. Swarm and Evolutionary Computation, 26, 8-22.
    • BaseEFO: My modified version using Levy-flight
  • EOA - Earthworm Optimisation Algorithm .

    • BaseEOA: Wang, G. G., Deb, S., & dos Santos Coelho, L. (2018). Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. IJBIC, 12(1), 1-22.
  • EO - Equilibrium Optimizer .

    • BaseEO: Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2019). Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Systems.
    • ModifiedEO: Gupta, S., Deep, K., & Mirjalili, S. (2020). An efficient equilibrium optimizer with mutation strategy for numerical optimization. Applied Soft Computing, 96, 106542.
    • AdaptiveEO: Wunnava, A., Naik, M. K., Panda, R., Jena, B., & Abraham, A. (2020). A novel interdependence based multilevel thresholding technique using adaptive equilibrium optimizer. Engineering Applications of Artificial Intelligence, 94, 103836.
    • LevyEO: My modified version using Levy-flight

F

  • FireflyA - Firefly Algorithm

    • BaseFireflyA: Łukasik, S., & Żak, S. (2009, October). Firefly algorithm for continuous constrained optimization tasks. In International conference on computational collective intelligence (pp. 97-106). Springer, Berlin, Heidelberg.
  • FA - Fireworks algorithm

    • BaseFA: Tan, Y., & Zhu, Y. (2010, June). Fireworks algorithm for optimization. In International conference in swarm intelligence (pp. 355-364). Springer, Berlin, Heidelberg.
  • FPA - Flower Pollination Algorithm

    • BaseFPA: Yang, X. S. (2012, September). Flower pollination algorithm for global optimization. In International conference on unconventional computing and natural computation (pp. 240-249). Springer, Berlin, Heidelberg.
  • FBIO - Forensic-Based Investigation Optimization

    • OriginalFBIO: Chou, J.S. and Nguyen, N.M., 2020. FBI inspired meta-optimization. Applied Soft Computing, p.106339.
    • BaseFBIO: My version
  • FOA - Fruit-fly Optimization Algorithm

    • OriginalFOA: Pan, W. T. (2012). A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowledge-Based Systems, 26, 69-74.
    • BaseFOA: My version
    • WFOA: Fan, Y., Wang, P., Heidari, A. A., Wang, M., Zhao, X., Chen, H., & Li, C. (2020). Boosted hunting-based fruit fly optimization and advances in real-world problems. Expert Systems with Applications, 159, 113502.

G

  • GA - Genetic Algorithm

    • BaseGA: Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73.
  • GWO - Grey Wolf Optimizer

    • BaseGWO: Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61.
    • RW_GWO: Gupta, S., & Deep, K. (2019). A novel random walk grey wolf optimizer. Swarm and evolutionary computation, 44, 101-112.
  • GOA - Grasshopper Optimisation Algorithm

    • BaseGOA: Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: theory and application. Advances in Engineering Software, 105, 30-47.
  • GCO - Germinal Center Optimization

    • OriginalGCO: Villaseñor, C., Arana-Daniel, N., Alanis, A. Y., López-Franco, C., & Hernandez-Vargas, E. A. (2018). Germinal center optimization algorithm. International Journal of Computational Intelligence Systems, 12(1), 13-27.
    • BaseGCO: My modified version
  • GSKA - Gaining Sharing Knowledge-based Algorithm .

    • OriginalGSKA: Mohamed, A. W., Hadi, A. A., & Mohamed, A. K. (2019). Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm. International Journal of Machine Learning and Cybernetics, 1-29.
    • BaseGSKA: My modified version

H

  • HC - Hill Climbing .

    • OriginalHC: Talbi, E. G., & Muntean, T. (1993, January). Hill-climbing, simulated annealing and genetic algorithms: a comparative study and application to the mapping problem. In [1993] Proceedings of the Twenty-sixth Hawaii International Conference on System Sciences (Vol. 2, pp. 565-573). IEEE.
    • BaseHC My modified version
  • HS - Harmony Search .

    • OriginalHS: Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm:harmony search. simulation, 76(2), 60-68.
    • BaseHS: My modified version
  • HHO - Harris Hawks Optimization .

    • BaseHHO: Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849-872.
  • HGSO - Henry Gas Solubility Optimization .

    • BaseHGSO: Hashim, F. A., Houssein, E. H., Mabrouk, M. S., Al-Atabany, W., & Mirjalili, S. (2019). Henry gas solubility optimization: A novel physics-based algorithm. Future Generation Computer Systems, 101, 646-667.
    • OppoHGSO: My modified version using opposition-based learning
    • LevyHGSO: My modified version using Levy-flight
  • HGS -- Hunger Games Search .

    • OriginalHGS: Yang, Y., Chen, H., Heidari, A. A., & Gandomi, A. H. (2021). Hunger games search:Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications, 177, 114864.
  • HHOA - Horse Herd Optimization Algorithm .

    • BaseHHOA: MiarNaeimi, F., Azizyan, G., & Rashki, M. (2021). Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems. Knowledge-Based Systems, 213, 106711.

I

  • IWO - Invasive Weed Optimization .

    • OriginalIWO: Mehrabian, A. R., & Lucas, C. (2006). A novel numerical optimization algorithm inspired from weed colonization. Ecological informatics, 1(4), 355-366.
    • BaseIWO: My modified version
  • ICA - Imperialist Competitive Algorithm

    • BaseICA: Atashpaz-Gargari, E., & Lucas, C. (2007, September). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In 2007 IEEE congress on evolutionary computation (pp. 4661-4667). Ieee.

J

  • JA - Jaya Algorithm
    • OriginalJA: Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7(1), 19-34.
    • BaseJA: My version
    • LJA: Iacca, G., dos Santos Junior, V. C., & de Melo, V. V. (2021). An improved Jaya optimization algorithm with Levy flight. Expert Systems with Applications, 165, 113902.

K

L

  • LCBO - Life Choice-Based Optimization
    • OriginalLCBO: Khatri, A., Gaba, A., Rana, K. P. S., & Kumar, V. (2019). A novel life choice-based optimizer. Soft Computing, 1-21.
    • BaseLCBO: My version
    • ModifiedLCO: My modified version using Levy-flight,
    • ImprovedLCO: My improved version using Gaussian distribution and Mutation Mechanism

M

  • MA - Memetic Algorithm

    • BaseMA: Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program, C3P Report, 826, 1989.
  • MFO - Moth Flame Optimization

    • OriginalMFO: Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-based systems, 89, 228-249.
    • BaseMFO: My version
  • MVO - Multi-Verse Optimizer

    • OriginalMVO: Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Computing and Applications, 27(2), 495-513.
    • BaseMVO: My modified version
  • MSA - Moth Search Algorithm

    • BaseMSA: Wang, G. G. (2018). Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Computing, 10(2), 151-164.
  • NMRA - Nake Mole-rat Algorithm

    • BaseNMR: Salgotra, R., & Singh, U. (2019). The naked mole-rat algorithm. Neural Computing and Applications, 31(12), 8837-8857.
    • LevyNMR: My version using Levy-flight
    • ImprovedNMR: My version using mutation probability, levy-flight and crossover operator
  • MRFO - Manta Ray Foraging Optimization

    • BaseMRFO: Zhao, W., Zhang, Z., & Wang, L. (2020). Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications. Engineering Applications of Artificial Intelligence, 87, 103300.
    • LevyMRFO: My version using Levy-flight

N

  • NRO - Nuclear Reaction Optimization
    • BaseNRO: Wei, Z., Huang, C., Wang, X., Han, T., & Li, Y. (2019). Nuclear Reaction Optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access.

O

P

  • PSO - Particle Swarm Optimization

    • BasePSO: Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39-43). Ieee.
    • PPSO: Ghasemi, M., Akbari, E., Rahimnejad, A., Razavi, S. E., Ghavidel, S., & Li, L. (2019). Phasor particle swarm optimization: a simple and efficient variant of PSO. Soft Computing, 23(19), 9701-9718.
    • P_PSO: Most same as PPSO
    • HPSO_TVAC: Ghasemi, M., Aghaei, J., & Hadipour, M. (2017). New self-organising hierarchical PSO with jumping time-varying acceleration coefficients. Electronics Letters, 53(20), 1360-1362.
    • C_PSO: Liu, B., Wang, L., Jin, Y. H., Tang, F., & Huang, D. X. (2005). Improved particle swarm optimization combined with chaos. Chaos, Solitons & Fractals, 25(5), 1261-1271.
    • CL_PSO: Liang, J. J., Qin, A. K., Suganthan, P. N., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE transactions on evolutionary computation, 10(3), 281-295.
  • PFA - Pathfinder Algorithm

    • BasePFA: Yapici, H., & Cetinkaya, N. (2019). A new meta-heuristic optimizer: Pathfinder algorithm. Applied Soft Computing, 78, 545-568.
    • OPFA: My version using Opposition-based learning
    • ImprovedPFA: My version using Opposition-based learning and Levy-flight

Q

  • QSA - Queuing Search Algorithm
    • OriginalQSA: Zhang, J., Xiao, M., Gao, L., & Pan, Q. (2018). Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems. Applied Mathematical Modelling, 63, 464-490.
    • BaseQSA: My version
    • OppoQSA: My version using opposition-based learning
    • LevyQSA: My version using Levy-flight
    • ImprovedQSA: My version using Levy-flight and Opposition-based learning

R

S

  • SA - Simulated Annealling

    • BaseSA: . Van Laarhoven, P. J., & Aarts, E. H. (1987). Simulated annealing. In Simulated annealing: Theory and applications (pp. 7-15). Springer, Dordrecht.
  • SSO - Social Spider Optimization

    • BaseSSO: Cuevas, E., Cienfuegos, M., ZaldíVar, D., & Pérez-Cisneros, M. (2013). A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Systems with Applications, 40(16), 6374-6384.
  • SSA - Social Spider Algorithm

    • OriginalSSA: James, J. Q., & Li, V. O. (2015). A social spider algorithm for global optimization. Applied Soft Computing, 30, 614-627.
    • BaseSSA My modified version
  • SCA - Sine Cosine Algorithm

    • OriginalSCA: Mirjalili, S. (2016). SCA: a sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120-133.
    • BaseSCA: My modified version
    • FasterSCA: My faster version than Base version
    • FastestSCA: My fastest version
  • SRSR - Swarm Robotics Search And Rescue

    • BaseSRSR: Bakhshipour, M., Ghadi, M. J., & Namdari, F. (2017). Swarm robotics search & rescue: A novel artificial intelligence-inspired optimization approach. Applied Soft Computing, 57, 708-726.
  • SBO - Satin Bowerbird Optimizer

    • OriginalSBO: Moosavi, S. H. S., & Bardsiri, V. K. (2017). Satin bowerbird optimizer: a new optimization algorithm to optimize ANFIS for software development effort estimation. Engineering Applications of Artificial Intelligence, 60, 1-15.
    • BaseSBO: My modified version
  • SalpSO - Salp Swarm Optimization

    • BaseSalpSO: Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191.
  • SFO - Sailfish Optimizer

    • BaseSFO: Shadravan, S., Naji, H. R., & Bardsiri, V. K. (2019). The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Engineering Applications of Artificial Intelligence, 80, 20-34.
    • ImprovedSFO: My improved version
  • SARO - Search And Rescue Optimization

    • OriginalSARO: Shabani, A., Asgarian, B., Gharebaghi, S. A., Salido, M. A., & Giret, A. (2019). A New Optimization Algorithm Based on Search and Rescue Operations. Mathematical Problems in Engineering, 2019.
    • BaseSARO: My modified version using Levy-flight
  • SSDO - Social Ski-Driver Optimization

    • BaseSSDO: Tharwat, A., & Gabel, T. (2019). Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm. Neural Computing and Applications, 1-14.
    • LevySSDO: My version using Levy-flight
  • SLO - Sea Lion Optimization

    • BaseSLO: Masadeh, R., Mahafzah, B. A., & Sharieh, A. (2019). Sea Lion Optimization Algorithm. Sea, 10(5).
    • ISLO: My improved version
    • ModifiedSLO: My modifed version using Levy-flight
  • SMA - Slime Mould Algorithm

    • OriginalSMA: Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems.
    • BaseSMA: My modified version
  • SpaSA - Sparrow Search Algorithm

    • OriginalSpaSA: Jiankai Xue & Bo Shen (2020) A novel swarm intelligence optimization approach: sparrow search algorithm, Systems Science & Control Engineering, 8:1, 22-34, DOI: 10.1080/21642583.2019.1708830
    • BaseSpaSA: My modified version

T

  • TLO - Teaching Learning Optimization

    • OriginalTLO: Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303-315.
    • BaseTLO: Rao, R., & Patel, V. (2012). An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. International Journal of Industrial Engineering Computations, 3(4), 535-560.
    • ITLO: Rao, R. V., & Patel, V. (2013). An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems. Scientia Iranica, 20(3), 710-720.
  • TWO - Tug of War Optimization

    • OriginalTWO: Kaveh, A., & Zolghadr, A. (2016). A novel meta-heuristic algorithm: tug of war optimization. Iran University of Science & Technology, 6(4), 469-492.
    • BaseTWO: My version
    • OppoTWO: Nguyen, T., Hoang, B., Nguyen, G., & Nguyen, B. M. (2020). A new workload prediction model using extreme learning machine and enhanced tug of war optimization. Procedia Computer Science, 170, 362-369.
    • LevyTWO: My version using Levy-flight
    • ImprovedTWO: My version using both Levy-flight and opposition-based learning

U

V

  • VCS - Virus Colony Search
    • OriginalVCS: Li, M. D., Zhao, H., Weng, X. W., & Han, T. (2016). A novel nature-inspired algorithm for optimization: Virus colony search. Advances in Engineering Software, 92, 65-88.
    • BaseVCS: My modified version

W

  • WCA - Water Cycle Algorithm

    • BaseWCA: Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures, 110, 151-166.
  • WOA - Whale Optimization Algorithm

    • BaseWOA: Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software, 95, 51-67.
    • HI_WOA: Tang, C., Sun, W., Wu, W., & Xue, M. (2019, July). A hybrid improved whale optimization algorithm. In 2019 IEEE 15th International Conference on Control and Automation (ICCA) (pp. 362-367). IEEE.
  • WHO - Wildebeest Herd Optimization

    • OriginalWHO: Amali, D., & Dinakaran, M. (2019). Wildebeest herd optimization: A new global optimization algorithm inspired by wildebeest herding behaviour. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-14.
    • BaseWHO: My modified version
  • WDO - Wind Driven Optimization

    • BaseWDO: Bayraktar, Z., Komurcu, M., & Werner, D. H. (2010, July). Wind Driven Optimization (WDO): A novel nature-inspired optimization algorithm and its application to electromagnetics. In 2010 IEEE antennas and propagation society international symposium (pp. 1-4). IEEE.

X

Y

Z

Dummy Algorithms

  • AAA - Artificial Algae Algorithm .

    • OriginalAAA: Uymaz, S. A., Tezel, G., & Yel, E. (2015). Artificial algae algorithm (AAA) for nonlinear global optimization. Applied Soft Computing, 31, 153-171.
    • BaseAAA: My trial version
  • BWO - Black Widow Optimization .

    • OriginalBWO: Hayyolalam, V., & Kazem, A. A. P. (2020). Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems. Engineering Applications of Artificial Intelligence, 87, 103249.
    • BaseBWO: My trial version
  • BOA - Butterfly Optimization Algorithm.

    • OriginalBOA: Arora, S., & Singh, S. (2019). Butterfly optimization algorithm: a novel approach for global optimization. Soft Computing, 23(3), 715-734.
    • BaseBOA: My trial version
    • AdaptiveBOA: Singh, B., & Anand, P. (2018). A novel adaptive butterfly optimization algorithm. International Journal of Computational Materials Science and Engineering, 7(04), 1850026.
  • BMO - Blue Monkey Optimization .

    • OriginalBMO: Blue Monkey Optimization: (2019) The Blue Monkey: A New Nature Inspired Metaheuristic Optimization Algorithm. DOI: http://dx.doi.org/10.21533/pen.v7i3.621
    • BaseBMO: My trial version
  • EPO - Emperor Penguin Optimizer .

    • OriginalEPO: Dhiman, G., & Kumar, V. (2018). Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowledge-Based Systems, 159, 20-50.
    • BaseEPO: My trial version
  • PIO - Pigeon-Inspired Optimization .

    • None: Duan, H., & Qiao, P. (2014). Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. International journal of intelligent computing and cybernetics.
    • BasePIO: My trial version, since the Original version not working.
    • LevyPIO: My trial version using Levy-flight
  • RHO - Rhino Herd Optimization .

    • OriginalRHO: Wang, G. G., Gao, X. Z., Zenger, K., & Coelho, L. D. S. (2018, December). A novel metaheuristic algorithm inspired by rhino herd behavior. In Proceedings of The 9th EUROSIM Congress on Modelling and Simulation, EUROSIM 2016, The 57th SIMS Conference on Simulation and Modelling SIMS 2016 (No. 142, pp. 1026-1033). Linköping University Electronic Press.
    • BaseRHO: My version
    • LevyRHO: My version using Levy-flight
  • SOA - Sandpiper Optimization Algorithm .

    • OriginalSOA: Kaur, A., Jain, S., & Goel, S. (2020). Sandpiper optimization algorithm: a novel approach for solving real-life engineering problems. Applied Intelligence, 50(2), 582-619.
    • BaseSOA: My trial version
  • STOA - Sooty Tern Optimization Algorithm. Sooty Tern Optimization Algorithm: Dhiman, G., & Kaur, A. (2019). STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Engineering Applications of Artificial Intelligence, 82, 148-174.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mealpy-1.2.1.tar.gz (179.4 kB view hashes)

Uploaded Source

Built Distribution

mealpy-1.2.1-py3-none-any.whl (297.2 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page