Skip to main content

Combine Bayesian analyses from many datasets. Easy sample parameter distributions.

Project description

PosteriorStacker

Combines Bayesian analyses from many datasets.

Introduction

Fitting a model to a data set gives posterior probability distributions for a parameter of interest. But how do you combine such probability distributions if you have many datasets?

This question arises frequently in astronomy when analysing samples, and trying to infer sample distributions of some quantity.

PosteriorStacker allows deriving sample distributions from posterior distributions from a number of objects.

Method

The method is described in Appendix A of Baronchelli, Nandra & Buchner (2020).

hbm.png

The inputs are posterior samples of a single parameter, for a number of objects. These need to come from pre-existing analyses, under a flat parameter prior.

The hierarchical Bayesian model (illustrated above) models the sample distribution as a Gaussian with unknown mean and standard deviation. The per-object parameters are also unknown, but integrated out numerically using the posterior samples.

Additional to the Gaussian model (as in the paper), a histogram model (using a flat Dirichlet prior distribution) is computed, which is non-parametric and more flexible. Both models are inferred using UltraNest.

The output is visualised in a publication-ready plot.

Synopsis of the program:

$ python3 posteriorstacker.py --help
usage: posteriorstacker.py [-h] [--verbose VERBOSE] [--name NAME]
                           filename low high nbins

Posterior stacking tool.

Johannes Buchner (C) 2020-2021

Given posterior distributions of some parameter from many objects,
computes the sample distribution, using a simple hierarchical model.

The method is described in Baronchelli, Nandra & Buchner (2020)
https://ui.adsabs.harvard.edu/abs/2020MNRAS.498.5284B/abstract
Two computations are performed with this tool:

- Gaussian model (as in the paper)
- Histogram model (using a Dirichlet prior distribution)

The histogram model is non-parametric and more flexible.
Both models are computed using UltraNest.
The output is plotted.

positional arguments:
  filename           Filename containing posterior samples, one object per line
  low                Lower end of the distribution
  high               Upper end of the distribution
  nbins              Number of histogram bins

optional arguments:
  -h, --help         show this help message and exit
  --verbose VERBOSE  Show progress
  --name NAME        Parameter name (for plot)

Johannes Buchner (C) 2020-2021 <johannes.buchner.acad@gmx.com>

Licence

AGPLv3 (see COPYING file). Contact me if you need a different licence.

Install

Clone or download this repository. You need to install the ultranest python package (e.g., with pip).

Tutorial

In this tutorial you will learn:

  • How to find a intrinsic distribution from data with asymmetric error bars and upper limits

  • How to use PosteriorStacker

Lets say we want to find the intrinsic velocity dispersion given some noisy data points.

Our data are velocity measurements of a few globular cluster velocities in a dwarf galaxy, fitted with some model.

Preparing the inputs

For generating the demo input files and plots, run:

$ python3 tutorial/gendata.py

Visualise the data

Lets plot the data first to see what is going on:

example.png

Caveat on language: These are not actually “the data” (which are counts on a CCD). Instead, this is a intermediate representation of a posterior/likelihood, assuming flat priors on velocity.

Data properties

This scatter plot shows:

  • large, sometimes asymmetric error bars

  • intrinsic scatter

Resampling the data

We could also represent each data point by a cloud of samples. Each point represents a possible true solution of that galaxy.

example-samples.png

Running PosteriorStacker

We run the script with a range limit of +-100 km/s:

$ python3 posteriorstacker.py posteriorsamples.txt -80 +80 11 --name="Velocity [km/s]"
fitting histogram model...
[ultranest] Resuming from 2333 stored points
[ultranest] Explored until L=-1e+01
[ultranest] Likelihood function evaluations: 114176
[ultranest] Writing samples and results to disk ...
[ultranest] Writing samples and results to disk ... done
[ultranest]   logZ = -20.66 +- 0.07543
[ultranest] Effective samples strategy satisfied (ESS = 684.4, need >400)
[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.46+-0.09 nat, need <0.50 nat)
[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.21, need <0.5)
[ultranest]   logZ error budget: single: 0.07 bs:0.08 tail:0.41 total:0.41 required:<0.50
[ultranest] done iterating.

logZ = -20.677 +- 0.457
  single instance: logZ = -20.677 +- 0.074
  bootstrapped   : logZ = -20.662 +- 0.211
  tail           : logZ = +- 0.405
insert order U test : converged: False correlation: 377.0 iterations

    bin1                0.052 +- 0.046
    bin2                0.053 +- 0.053
    bin3                0.065 +- 0.060
    bin4                0.063 +- 0.057
    bin5                0.109 +- 0.085
    bin6                0.31 +- 0.14
    bin7                0.16 +- 0.10
    bin8                0.051 +- 0.051
    bin9                0.047 +- 0.043
    bin10               0.047 +- 0.046
    bin11               0.046 +- 0.045
fitting gaussian model...
[ultranest] Resuming from 3579 stored points
[ultranest] Explored until L=-4e+01
[ultranest] Likelihood function evaluations: 4544
[ultranest] Writing samples and results to disk ...
[ultranest] Writing samples and results to disk ... done
[ultranest]   logZ = -47.33 +- 0.0901
[ultranest] Effective samples strategy satisfied (ESS = 1011.4, need >400)
[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.46+-0.06 nat, need <0.50 nat)
[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.20, need <0.5)
[ultranest]   logZ error budget: single: 0.13 bs:0.09 tail:0.41 total:0.42 required:<0.50
[ultranest] done iterating.

logZ = -47.341 +- 0.453
  single instance: logZ = -47.341 +- 0.126
  bootstrapped   : logZ = -47.332 +- 0.203
  tail           : logZ = +- 0.405
insert order U test : converged: False correlation: 13.0 iterations

    mean                -0.2 +- 4.6
    std                 11.6 +- 5.2

Vary the number of samples to check numerical stability!
plotting results ...

Notice the parameters of the fitted gaussian distribution above. The standard deviation is quite small (which was the point of the original paper). A corner plot is at posteriorsamples.txt_out_gauss/plots/corner.pdf

Visualising the results

Here is the output plot, converted to png for this tutorial with:

$ convert -density 100 posteriorsamples.txt_out.pdf out.png
out.png

In black, we see the non-parametric fit. The red curve shows the gaussian model.

The histogram model indicates that a more heavy-tailed distribution may be better.

The error bars in gray is the result of naively averaging the posteriors. This is not a statistically meaningful procedure, but it can give you ideas what models you may want to try for the sample distribution.

Output files

  • posteriorsamples.txt_out.pdf contains a plot,

  • posteriorsamples.txt_out_gauss contain the ultranest analyses output assuming a Gaussian distribution.

  • posteriorsamples.txt_out_flexN contain the ultranest analyses output assuming a histogram model.

  • The directories include diagnostic plots, corner plots and posterior samples of the distribution parameters.

With these output files, you can:

  • plot the sample parameter distribution

  • report the mean and spread, and their uncertainties

  • split the sample by some parameter, and plot the sample mean as a function of that parameter.

If you want to adjust the plot, just edit the script.

If you want to try a different distribution, adapt the script. It uses UltraNest for the inference.

Take-aways

  • PosteriorStacker computed a intrinsic distribution from a set of uncertain measurements

  • This tool can combine arbitrarily pre-existing analyses.

  • No assumptions about the posterior shapes were necessary – multi-modal and asymmetric works fine.

Changelog

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

posteriorstacker-0.5.1.tar.gz (90.0 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page