Skip to main content

Cache any python object to file using improved pickling

Project description

https://badge.fury.io/py/anycache.svg https://img.shields.io/pypi/dm/anycache.svg?label=pypi%20downloads https://readthedocs.org/projects/anycache/badge/?version=latest https://coveralls.io/repos/github/c0fec0de/anycache/badge.svg https://readthedocs.org/projects/anycache/badge https://img.shields.io/pypi/pyversions/anycache.svg https://img.shields.io/github/contributors/c0fec0de/anycache.svg https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square https://img.shields.io/github/issues-pr/c0fec0de/anycache.svg https://img.shields.io/github/issues-pr-closed/c0fec0de/anycache.svg

To cache the result of a function, use the global unlimited anycache:

>>> from anycache import anycache
>>> @anycache()
... def myfunc(posarg, kwarg=3):
...     print("  Calcing %r + %r = %r" % (posarg, kwarg, posarg + kwarg))
...     return posarg + kwarg
>>> myfunc(8, 5)
  Calcing 8 + 5 = 13
13
>>> myfunc(8, 5)
13

anycache caches nearly any python object. Also lambda statements. It uses Dill as backend. An improved version of pythons build-in pickle.

To preserve the result between multiple python runs, a persistent cache directory needs to be set.

>>> from anycache import anycache
>>> @anycache(cachedir='/tmp/anycache.my')
... def myfunc(posarg, kwarg=3):
...     return posarg + kwarg

The AnyCache object serves additional functions for cache clearing and size handling.

Installation

To install the anycache module run:

pip install anycache

If you do not have write-permissions to the python installation, try:

pip install anycache --user

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page