Marine: Multi-task learning based on Japanese accent estimation
Project description
MARINE : Multi-task leaRnIng-based JapaNese accent Estimation
marine
is a tool kit for building the Japanese accent estimation model proposed in our paper.
For academic use, please cite the following paper (IEEE Xplore).
@inproceedings{park22b_interspeech,
author={Byeongseon Park and Ryuichi Yamamoto and Kentaro Tachibana},
title={{A Unified Accent Estimation Method Based on Multi-Task Learning for Japanese Text-to-Speech}},
year=2022,
booktitle={Proc. Interspeech 2022},
pages={1931--1935},
doi={10.21437/Interspeech.2022-334}
}
Notice
The model included in this package is trained using JSUT corpus, which is not the same as the dataset in our paper. Therefore, the model's performance is also not equal to the performance introduced in our paper.
Get started
Install
$ pip install marine
For develop
$ pip install -e ".[dev]"
Quick demo
In [1]: from marine.predict import Predictor
In [2]: nodes = [
...: {
...: "surface": "こんにちは",
...: "pos": "感動詞:*:*:*",
...: "pron": "コンニチワ",
...: "c_type": "*",
...: "c_form": "*",
...: "accent_type": 0,
...: "accent_con_type": "-1",
...: "chain_flag": -1
...: }
...: ]
In [3]: predictor = Predictor()
In [4]: predictor.predict([nodes])
Out[4]:
{'mora': [['コ', 'ン', 'ニ', 'チ', 'ワ']],
'intonation_phrase_boundary': [[0, 0, 0, 0, 0]],
'accent_phrase_boundary': [[0, 0, 0, 0, 0]],
'accent_status': [[0, 0, 0, 0, 0]]}
In [5]: predictor.predict([nodes], accent_represent_mode="high_low")
Out[5]:
{'mora': [['コ', 'ン', 'ニ', 'チ', 'ワ']],
'intonation_phrase_boundary': [[0, 0, 0, 0, 0]],
'accent_phrase_boundary': [[0, 0, 0, 0, 0]],
'accent_status': [[0, 1, 1, 1, 1]]}
Build model your self
Coming soon
LICENSE
- marine: Apache_2.0 license (LICENSE)
- JSUT: CC-BY-SA 4.0 license (Please check jsut-label/LICENCE.txt)