Skip to main content

python package implementing a multivariate Horner scheme for efficiently evaluating multivariate polynomials

Project description

CI status documentation status https://img.shields.io/pypi/wheel/multivar-horner.svg pre-commit Total PyPI downloads latest version on PyPI JOSS status https://zenodo.org/badge/155578190.svg https://img.shields.io/badge/code%20style-black-000000.svg

multivar_horner is a python package implementing a multivariate Horner scheme (“Horner’s method”, “Horner’s rule”) for efficiently evaluating multivariate polynomials.

Quick Guide:

pip install multivar_horner

For efficiency this package is compiling the instructions required for polynomial evaluation to C by default. If you don’t have a C compiler (gcc or cc) installed you also need to install numba for using an alternative method:

pip install multivar_horner[numba]

Simple example:

import numpy as np
from multivar_horner import HornerMultivarPolynomial

# input parameters defining the polynomial
#   p(x) = 5.0 + 1.0 x_1^3 x_2^1 + 2.0 x_1^2 x_3^1 + 3.0 x_1^1 x_2^1 x_3^1
coefficients = np.array([[5.0], [1.0], [2.0], [3.0]], dtype=np.float64)
exponents = np.array([[0, 0, 0], [3, 1, 0], [2, 0, 1], [1, 1, 1]], dtype=np.uint32)

# [#ops=7] p(x) = x_1 (x_1 (x_1 (1.0 x_2) + 2.0 x_3) + 3.0 x_2 x_3) + 5.0
horner_polynomial = HornerMultivarPolynomial(coefficients, exponents)
x = np.array([-2.0, 3.0, 1.0], dtype=np.float64)
p_x = horner_polynomial(x)

For more refer to the documentation.

Also see: GitHub, PyPI, arXiv paper

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page