data validation and conversion library
Project description
PyDTO is a data conversion library. It can validate data, that comes from various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydtoz import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.
A taste of this library:
>>> from decimal import Decimal >>> from pydto import Schema, Required, List, Enum >>> SCHEMA = Schema(List({ ... Required('price'): Decimal, ... Required('category'): Enum('laptops', 'tablets', 'phones'), ... Required('quantity'): int, ... Required('serial'): (str, int) ... })) >>> result = SCHEMA([ ... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']}, ... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']}, ... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']} ]) >>> assert result == [ ... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]}, ... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]}, ... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]} ]
Check out documentation for more detailed review at Github repo.