Skip to main content

data validation and conversion library

Project description

PyDTO is a data conversion library. It can validate data, that comes from various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at Github repo.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page